Header

Shop : Details

Shop
Details
58,80 €
ISBN 978-3-8440-9400-8
Softcover
162 pages
50 figures
220 g
21 x 14,8 cm
German
Thesis
February 2024
Kerstin Palm
Einsatzindividuelles, intelligentes Energiemanagement im hybriden Nutzfahrzeug
Hybridfahrzeuge können insbesondere im Schwerlastverkehr dazu beitragen, die seitens der EU vorgegebenen Ziele zur CO2-Flottenreduktion zu erreichen. Um das Potential der Hybridantriebe möglichst weit ausnutzen zu können, sind geeignete, intelligente Energiemanagementstrategien erforderlich. In der Wissenschaft gibt es hierfür erste Ansätze, die auf Maschinellen Lernverfahren beruhen. Neben der Wahl des Algorithmus und seiner Parametrierung haben die verwendeten Trainingsdaten einen wesentlichen Einfluss auf die erlernten Strategien. In den bisher veröffentlichten Ansätzen werden einzelne aufgezeichnete Messfahrten, deren Repräsentativität zu hinterfragen ist, oder standardisierte Fahrprofile verwendet, die wiederum sehr allgemein gehalten sind und vom tatsächlichen Fahrzeugeinsatz abweichen können.
In der vorliegenden Arbeit wird untersucht, ob einsatzindividuelle, synthetische Fahrprofile in Simulationsmodellen für das Training solcher Maschineller Lernverfahren zum Energiemanagement geeignet sind und welche Vorteile sich gegenüber einem Training mit standardisierten Profilen ergeben. Es werden zwei Varianten hinsichtlich der vorhandenen Ladeinfrastruktur betrachtet. Das Training erfolgt einerseits mit den einsatzindividuellen und andererseits mit standardisierten Profilen. Als weitere Varianten werden mittels der Dynamischen Programmierung global optimierte Lösungen sowie daraus abgeleitete regelbasierte Steuerstrategien betrachtet. Es zeigt sich, dass die einsatzindividuell trainierten Reinforcement Learning-Agenten zum Energiemanagement sowohl hinsichtlich des Kraftstoffverbrauchs wie auch der Betriebskosten deutlich bessere Ergebnisse liefern als die standardisiert trainierten. Von der optimierten Lösung weichen die einsatzindividuellen Agenten um etwa 2 % ab.
Keywords: Energiemanagement; KI; Maschinelles Lernen; Hybridfahrzeug; Simulation
Forschungsberichte aus dem Institut für mobile Maschinen und Nutzfahrzeuge
Edited by Freundes- und Förderkreis des Instituts für mobile Maschinen und Nutzfahrzeuge e.V., Braunschweig
Available online documents for this title
You need Adobe Reader, to view these files. Here you will find a little help and information for downloading the PDF files.
Please note that the online documents cannot be printed or edited.
Please also see further information at: Help and Information.
 
 DocumentDocument 
 TypePDF 
 Costs44,10 € 
 ActionDownloadPurchase in obligation and download the file 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDownloadDownload the file 
     
User settings for registered online customers (online documents)
You can change your address details here and access documents you have already ordered.
User
Not logged in
Export of bibliographic data
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
Germany
  +49 2421 99011 9
Mon. - Thurs. 8:00 a.m. to 4:00 p.m.
Fri. 8:00 a.m. to 3:00 p.m.
Contact us. We will be happy to help you.
Captcha
Social Media