Eine Methode zur Reihenfolgeplanung bei Mehrprodukt-Fertigungssystemen

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

an der Fakultät für Maschinenbau der Universität Karlsruhe

genehmigte

Dissertation

von Dipl.-Wirtsch.-Ing. Peter Steininger

aus Worms/Rhein

Tag der mündlichen Prüfung: 03.11.2006

Referent: Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing.

Gert Zülch

Korreferent: Prof. Dr. Wolffried Stucky

Forschungsberichte aus dem Institut für Arbeitswissenschaft und Betriebsorganisation der Universität Karlsruhe

Herausgeber Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Gert Zülch

Band 38 - 2007

Peter Steininger

Eine Methode zur Reihenfolgeplanung bei Mehrprodukt-Fertigungssystemen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Univ., Diss., 2006

Copyright Shaker Verlag 2007 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-6079-8 ISSN 1436-3224

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort des Herausgebers

Die Planung der Auftragsreihenfolge bei Mehrproduktfertigungssystemen ist für die betriebliche Praxis ein äußerst relevantes Thema. Dabei werden einerseits die in einer definierten Planungsperiode einzulastenden Fertigungsaufträge als bekannt vorausgesetzt, andererseits die Bearbeitungsfolge eines jeden Auftrags als technologisch definiert betrachtet. Des Weiteren wird auch die Fertigungsstruktur in technischer und kapazitätsbezogener Hinsicht als gegeben angesehen, üblicherweise wird jedoch keine Unterscheidung zwischen maschinellen und personellen Ressourcen vorgenommen. Wohl aber werden verschiedene Ablaufprinzipien betrachtet, wobei in der Literatur vorrangig zwischen einer Anordnung der maschinellen Ressourcen nach dem Verrichtungsprinzip (Job Shop) und nach dem Flussprinzip (Flow Shop) unterschieden wird.

Das Operations Research befasst sich bereits seit den 1950er-Jahren mit dieser Problemstellung. Es wurden zwar Lösungsverfahren entwickelt, die im Prinzip derartige Probleme im Sinne einer mathematischen Optimierung lösen können, jedoch ist der Rechenaufwand hierfür so hoch, dass diese Verfahren für praktische Anwendungen nicht eingesetzt werden können. Daher wurden andere Verfahren entwickelt, die in annehmbarer Rechenzeit zumindest eine gute Lösung für eine vorgegebene Problemklasse liefern. Die Bandbreite reicht dabei von Verfahren auf der Basis von Prioritätsregeln über diverse heuristische Suchverfahren bis hin zu den in jüngerer Zeit entwickelten Genetischen Algorithmen, die Vorgänge der Evolution zum Lösungsfinden imitieren.

Während beim Flussprinzip die einzelnen Aufträge aus einer Sequenz von Arbeitsvorgängen bestehen, sind diese beim Verrichtungsprinzip netzwerkartig miteinander verknüpft. Organisatorisch betrachtet liegt dann ein Mehrprojekt-Planungsproblem vor, bei dem eine möglichst gute zeitliche Zuordnung der Arbeitsvorgänge zu den begrenzten Ressourcen gesucht wird. Hierbei können dann auch noch verschiedene Zielsetzungen verfolgt werden, die von der Maximie-

rung der Ressourcenauslastung bis hin zur Minimierung der Durchlaufzeit des gesamten einzuplanenden Auftragsprogramms reicht. Hieraus ergibt sich dann eine weitere Aufgabe daraus, nicht nur ein geeignetes Lösungsverfahren anzuwenden, sondern auch den erforderlichen Datentransfer, die notwendigen zusätzlichen Angaben durch den Benutzer des Verfahrens sowie die Ausgabe und Bewertung der Ergebnisse im Sinne der Gebrauchstauglichkeit der Software möglichst benutzungsgerecht zu gestalten.

Die hier vorgelegte Arbeit setzt sich zum Ziel, hierfür eine geeignete Methode zu entwickeln und in einer Software bereit zu stellen. Der Anwendungsbereich wird dabei auf die Lösung von Auftragsreihenfolgeproblemen bei einer Fertigung nach dem Verrichtungsprinzip eingegrenzt. Des Weiteren sind die Aufträge durch jeweils unterschiedliche Netzwerke charakterisiert, bei denen eine parallele Bearbeitung einzelner Arbeitsvorgänge eines Auftrages möglich ist. Dadurch wird auf eine Fertigung von Einzelerzeugnissen nach dem Verrichtungsprinzip fokussiert und damit auf eine Problemklasse, die als schwer lösbar einzustufen ist.

Zur Bewältigung des Datentransfers werden die Auftragsdaten aus einer vorhandenen Software über eine Datenschnittstelle in das Lösungsverfahren übernommen. Hierfür wird vorausgesetzt, dass diese Aufträge mit der zeitlich-logischen Folge ihrer Arbeitsvorgänge in einem Projektplanungsverfahren, hier speziell Microsoft Project 2003, modelliert sind. Die Ermittlung einer guten Auftragsreihenfolge erfolgt dann in dem hier neu entwickelten Verfahren REIMOS. Das Ergebnis der Reihenfolgeplanung wird anschließend an das Projektplanungsverfahren zurückgegeben, mit dessen Funktionalitäten dann die Lösung bewertet werden kann. Die Güte des neu entwickelten Reihenfolgeplanungsverfahrens wird abschließend anhand von Benchmarks überprüft, die öffentlich verfügbar sind, sich dort aber auf idealtypische Reihenfolgeprobleme beziehen. Diese Validierung des Verfahrens zeigt auf, dass das neue Verfahren einen wertvollen Beitrag für die betriebliche Praxis liefert.

Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Gert Zülch

Inhaltsverzeichnis

				Seite
1.	Defi	izite bei	i der Reihenfolgeplanung von Mehrprodukt-	
	Fert	igungss	systemen	7
	1.1	Ausga	angssituation und Problemstellung	7
	1.2	Zielse	etzung der Arbeit	9
		1.2.1	Modellierung des Fertigungsprogramms	9
		1.2.2	Verfahren zur algorithmischen Lösung	11
		1.2.3	Ziele der Arbeit	12
	1.3	Vorge	ehensweise und Aufbau der Arbeit	13
2.	Stan	d der T	echnik der Reihenfolgeplanung	16
	2.1	Aufga	aben der Reihenfolgeplanung	16
		2.1.1	Einordnung der Reihenfolgeplanung in die	
			Betriebsorganisation	16
			2.1.1.1 Gestaltungsalternativen der Produktion	ıs-
			organisation	17
			2.1.1.2 Ablaufplanung	18
			2.1.1.3 Ablaufprinzipien	19
		2.1.2		
			Produktionsplanung und -steuerung	22
		2.1.3	Begriffsbestimmung	24
			2.1.3.1 Reihenfolgeplanung in der Fertigung	24
			2.1.3.2 Algorithmische Reihenfolgeplanung	25
	2.2		ale Beschreibung des Reihenfolgeproblems	26
			Begriffe und Definitionen	26
			Zeitbegriff der Reihenfolgeplanung	30
		2.2.3	Definition der Eingabe- und Ausgabezeitarten	31
			2.2.3.1 Zeiten der Eingabedaten	31
			2.2.3.2 Zeiten der Ergebnisdaten	33
			Zielfunktionen der Reihenfolgeplanung	37
		2.2.5		39
	2.3	Klass	ifikation der Reihenfolgeprobleme	40

		2.3.1 Hauptkriterien der Klassifikation	41
		2.3.2 Maschinencharakteristika	41
		2.3.3 Auftragscharakteristika	45
		2.3.4 Zielsetzungen	50
	2.4	Entwicklung der Reihenfolgeplanung	52
		2.4.1 Historie der Reihenfolgeplanung	52
		2.4.2 Ablaufplanungsverfahren	54
		2.4.3 Abhängigkeit der Reihenfolgeprobleme	56
	2.5	Darstellung des Reihenfolgeproblems als Graphen-	
		problem	57
		2.5.1 Graphentheoretische Überlegungen	57
		2.5.2 Beispiel eines Job-Shop-Problems in Graphen-	
		darstellung	60
		2.5.2.1 Aufgabenstellung	60
		2.5.2.2 Darstellung des Graphen	61
		2.5.2.3 Darstellung von Auftragsfreigabeterminen	62
		2.5.2.4 Umformung des Graphen zu einem	02
		Digraphen	63
		2.5.2.5 Überführung des Digraphen in einen	0.5
		Hamilton-Digraphen	64
		2.5.2.6 Bewertung des Hamilton-Digraphen	66
	2.6	Auswahl des zu lösenden Problems	68
3.		echenbarkeit und Komplexität von Algorithmen	70
	3.1	i &	70
	3.2	č	72
		3.2.1 Funktionsweise der Turingmaschine	72
		3.2.2 Entscheidungsprobleme	75
	3.3	Komplexitätsklassen von Entscheidungsproblemen	77
	3.4	Problemklassen der Reihenfolgeplanung	79
	3.5	Beispiele für das Laufzeitverhalten von Algorithmen	81
4.	Algo	orithmen zur Lösung von \mathcal{NP} -schweren Problemen	84
	4.1	-	84
	4.2	Branch-and-Bound-Algorithmen	85
	4.3	Suchtechniken	87

	4.3.1	Lokale S	Suchtechniken	87	
	4.3.2	Nachbarschaftsstruktur			
	4.3.3	Simulate	ed Annealing	89	
4.4	Lösun	ngsalgorithmen für Job-Shop-Probleme			
	4.4.1	Vereinfa	chungsverfahren	90	
		4.4.1.1	Zurückführung des Job-Shop-Problems		
			auf Ein-Maschinen-Probleme	90	
		4.4.1.2	Shifting-Bottleneck-Verfahren	91	
	4.4.2	Heuristis	sche Verfahren	91	
		4.4.2.1	Prioritätsregelverfahren	91	
		4.4.2.2	Verfahren von Giffler-Thompson	92	
	4.4.3	Verfahre	en zur Reihenfolgeplanung	93	
		4.4.3.1	Reduktion der Komplexität für Reihen-		
			folgealgorithmen	93	
		4.4.3.2	Das Softwaresystem ISSOP	94	
		4.4.3.3	Das Verfahren Plant PowerOps	95	
		4.4.3.4	Computer-Algebra-Verfahren	95	
	4.4.4	Weitere	Algorithmen	96	
4.5	Evolutionsansätze			97	
	4.5.1	Idee der	Evolutionsansätze	97	
	4.5.2	Grundle	gende Aspekte der Genetik	99	
	4.5.3				
		weise G	enetischer Algorithmen	102	
	4.5.4	Formale	Darstellung des Evolutionsprogramms	102	
4.6	Evolu	tionsstrate	egien	104	
	4.6.1	Standard	lmodell	104	
	4.6.2	Vereinfa	chung des Standardmodells	107	
4.7	Genet	Genetische Algorithmen 1			
	4.7.1	Prinzip		108	
	4.7.2	Lösunge	n	111	
	4.7.3	Verfahre	ensablauf	112	
	4.7.4	Operator	ren für Genetische Algorithmen	115	
		4.7.4.1		115	
			Selektion	116	
		4.7.4.3	Crossover-Verfahren	117	
		4.7.4.4	Mutation	119	

			4.7.4.5	Reproduktion	121
		4.7.5		öglichkeiten von Genetischen Algorith-	
			men		121
		4.7.6	Vergleich	n zwischen Evolutionsstrategien und	
			_	nen Algorithmen	123
		4.7.7		Nachteile von Genetischen Algorith-	
			men	Ç	125
5.	Entv	vicklun	g eines Ve	rfahrens zur Reihenfolgeplanung	129
	5.1		_	-Shop-Problemen	129
	5.2		_	Auftragsreihenfolgen für Job-Shop-	
		Proble	eme mittels	s Chromosomen	130
		5.2.1	Direkte R	Lepräsentationstechniken	132
			5.2.1.1	Completion-Time-basierte Repräsen-	
				tation	132
			5.2.1.2	Job-basierte Repräsentation	132
			5.2.1.3	Job-Pair-Relation-basierte Repräsen-	
				tation	133
			5.2.1.4	Operation-basierte Repräsentation	133
			5.2.1.5	Random-Key-basierte Repräsentation	134
		5.2.2	Indirekte	Repräsentationstechniken	135
			5.2.2.1	Disjunctive-Graph-basierte Repräsen-	
				tation	135
			5.2.2.2	Machine-basierte Repräsentation	136
			5.2.2.3	Preference-List-basierte Repräsentation	136
			5.2.2.4	Priority-Rule-basierte Repräsentation	137
		5.2.3	Auswahl	der Chromosomenrepräsentation	137
	5.3	Opera	toren für J	ob-Shop-Probleme in Genetischen	
		_	ithmen		138
			Fitness-F		138
		5.3.2			138
			5.3.2.1	Rouletterad-Selektion	138
			5.3.2.2	Ranking-and-Scaling	140
			5.3.2.3	$(\mu+\lambda)$ -Selektion	141
			5.3.2.4	Tournament-Selektion	141
		533	Crossove	r	142

		5.3.4	Mutation	148	
		5.3.5	Reproduktion	149	
6.	Real	lisierun	g eines graphisch-interaktiven Verfahrens zur		
			eplanung	150	
	6.1 Entwicklung des graphisch-interaktiven Planungs-				
		verfah	nrens REIMOS	150	
		6.1.1	Aufbau und Module des Verfahrens	150	
		6.1.2	Anforderungen an die Benutzungsoberfläche	152	
	6.2	Abbil	dung der aufgabenspezifischen Daten	154	
		6.2.1	Anlegen des Planungsprojektes	154	
		6.2.2	Eingabe der Planungsparameter	155	
	6.3		mentierung	161	
		6.3.1	Technische Umsetzung	161	
			6.3.1.1 Rechnerkonfiguration und Software	162	
			6.3.1.2 Integration in <i>Microsoft Office</i>	163	
			6.3.1.3 Erstellung der Wizard-Komponente	167	
			6.3.1.4 Chromosomen-Repräsentation in		
			REIMOS	168	
		6.3.2	Darstellung der Planungsergebnisse	168	
7.			n und Validierung des entwickelten Verfahrens	169	
	7.1		kation des entwickelten Verfahrens in einer		
			lfertigung	169	
		7.1.1		169	
			Beschreibung des Planungsergebnisses	170	
	7.2		ierung des entwickelten Verfahrens	170	
			Benchmarkinstanzen der Reihenfolgeplanung	171	
			Parameter und Bewertungskriterien	171	
		7.2.3	E	172	
	7.3		ssion des mit <i>REIMOS</i> ermittelten Planungs-		
		ergebi	nisses	176	
8.	Zusa	amment	fassung und Ausblick	177	
	8.1	Zusan	nmenfassung	177	
	8.2	Ausbl	ick und weiterführende Aspekte	178	

9.		aturverzeichnis	180
	9.1	Quellen	180
	9.2	Software	198
10.	Anha	ang	199
		Speicherung von Graphen	199
		Pseudocodedarstellung des Genetischen Algorithmus	
		nach Goldberg	201
		10.2.1 Definitionen des Genetischen Algorithmus	201
		10.2.2 Hauptprogramm des Genetischen Algorithmus	201
		10.2.3 Unterprogramme des Genetischen Algorithmus	202
		10.2.3.1 Initialisierung der Population	202
		10.2.3.2 Decodierungsfunktion	202
		10.2.3.3 Populationsstatistische Funktionen	202
		10.2.3.4 Erzeugung einer neuen Generation	203
		10.2.3.5 Genetische Operatoren	203
		10.2.3.5.1 Selektion	203
		10.2.3.5.2 Mutation	204
		10.2.3.5.3 Crossover	204
	10.3	Pseudocodedarstellung des Partially-Matched-Crossover	
		nach Goldberg	205
		Objektmodell von Microsoft Project 2003	207
		Benutzungsoberfläche des REIMOS-Wizard	208
	10.6	Benchmark-Instanzen für Job-Shop-Probleme nach	
		Taillard	216
		10.6.1 Benchmark-Instanz JSP-15-15 von Taillard	216
		10.6.2 Benchmark-Instanz JSP-20-15 von Taillard	219
		10.6.3 Benchmark-Instanz JSP-50-20 von Taillard	221
		10.6.4 Ergebnisübersicht für die Benchmark-Instanzen	
		nach Taillard	224
	10.7	Modelldatei einer Reihenfolgeplanung mittels REIMOS	227
11.	Verz	eichnis der Formelzeichen und Abkürzungen	229
		Formelzeichen	229
	112	Ahkiirzungen	241