Iterative Optimierung kontinuierlicher chromatographischer Prozesse

Zur Erlangung des akademischen Grades eines

Dr.-Ing.

von der Fakultät Bio- und Chemieingenieurwesen der Technischen Universität Dortmund genehmigte Dissertation

vorgelegt von

Dipl.-Ing. Malte Behrens

aus

Bergisch Gladbach

Tag der mündlichen Prüfung: 24.08.2015

1. Gutachter: Prof. Dr. Sebastian Engell

2. Gutachter: Prof. Dr. Seidel-Morgenstern

Dortmund 2016

Schriftenreihe des Lehrstuhls für Systemdynamik und Prozessführung herausgegeben von Prof. Dr.-Ing. Sebastian Engell

Band 1/2016

Malte Behrens

Iterative Optimierung kontinuierlicher chromatographischer Prozesse

D 290 (Diss. Technische Universität Dortmund)

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dortmund, Technische Univ., Diss., 2015

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4420-1 ISSN 1867-9498

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Zusammenfassung

Kontinuierliche chromatographische Prozesse stehen in Konkurrenz zu etablierten kontinuierlichen Trennverfahren. Ver- und Betreiber solcher Prozesse unterliegen dem wirtschaftlichen Druck, den Energie- und Hilfsmitteleinsatz nah am verfahrenstechnischen Minimum zu halten. Bei gegebenem Design ist dafür die Online-Optimierung oder die optimierende Regelung auf Basis rigoroser Simulationsmodelle eine wirksame und robuste Methode, solange Modellfehler algorithmisch kompensiert werden. Für den Simulated Moving Bed (SMB) Prozess der bekannteste Vertreter kontinuierlicher chromatographsicher Prozesse - wurde die optimierende Regelung unter ökonomischen Gesichtspunkten bereits erfolgreich angewendet. Die vorliegende Arbeit zeigt an zwei weiteren Beispielen, der annularen Chromatographie und der ternären Trennung nach dem Multi Column Solvent Gradient Purification (MCSGP) Prozess, dass eine modellbasierte Online-Optimierung unter ökonomischem Gütefunktional auch bei kontinuierlichen Prozessen mit anderen dynamischen und simulationstechnischen Herausforderungen als der SMB-Prozess erfolgreich angewendet werden kann. Zwei Aspekte stehen im Fokus: Die erstmalige Einbindung einer zweidimensionalen Simulation in das Optimierungskonzept (für die annulare Chromatographie) sowie die Kompensation von strukturellen Modellfehlern durch die sogenannte Gradientenmodifikation (für beide Prozesse). Die angewandten Optimierungsalgorithmen sind eine Adaption der iterativen Stellgrößenoptimierung für die Batch-Chromatographie durch den modifizierten ISOPE-Algorithmus mit Gradientenmodifikation (Integrated Set-point Optimization and Parameter Estimation with Gradient Modification and Finite Difference Perturbation when Necessary). Für die zweidimensionale Simulation der annularen Chromatographie wurde ein numerisches Verfahren hergeleitet, welches bis zu 25 mal schneller ist als ein Standardverfahren der selben Fehlerordnung und welches keiner Iteration zwischen den Zuständen in den beiden physikalischen Phasen bedarf. Durch die gezielte Wahl zusätzlicher Betriebspunkte und die dadurch signifikant verringerte Anzahl an notwendigen Simulationsaufrufen benötigte der Gesamtalgorithmus 74% weniger Rechenzeit. Es wurde gezeigt, dass eine Parameterschätzung trotz Gradientenmodifikation die Anzahl an Nebenbedingungsverletzungen reduziert. Am Beispiel eines simulierten MCSGP-Prozesses wurde erstmals an einem geschalteten kontinuierlichen Mehrsäulenverfahren eine modellbasierte Online-Optimierung mit Gradientenmodifikation durchgeführt. Bisherige Algorithmen zur Online-Optimierung des MCSGP-Prozesses haben weder den Lösungsmittelverbrauch als ökonomierelevanten Parameter optimiert noch strukturelle Modellfehler berücksichtigt.

Abstract

The decision to embed continuous chromatography into production processes needs to be justified by a comparison to classical unit operations. Thus, suppliers and users of chromatographic systems are exposed to the economic pressure to design and operate them at an efficient operating point regarding utility consumption. The application of online optimizing control based on rigorous models turned out to be a suitable strategy to realize this requirement as long as model errors can be compensated. The present work demonstrates the effectiveness of model based online optimization algorithms for two examples, the Continuous Annular Electro-Chromatography (CAEC) and the Multi Column Solvent Gradient Purification (MCSGP) process. The focus of this work is on two different aspects: The challenging inclusion of a simulation of a two dimensional distributed system into an online optimization scheme (CAEC process) and the compensation of structural model mismatches by gradient modification (both processes). The algorithms used are adaptations of a set point control strategy applied to batch chromatography, called Integrated Set-point Optimization and Parameter Estimation with Gradient Modification and Finite Difference Perturbation when Necessary (ISOPE FDPN). For the simulation of annular chromatography, a numerical scheme was derived which is up to 25 times faster than a standard method and does not need iterations between the solutions for the two different physical phases. Compared to the reference optimization algorithm the number of simulation calls within the optimization was significantly reduced, resulting in 4 times shorter optimization time. This was possible by replacing an optimization based selection of some set points by a simple a priori positioning strategy. With a simulated MCSGP process as an example, an online optimization with gradient modification was applied for the first time to a continuous chromatographic multi column process. Previously published optimizing control schemes for this process neither minimized the solvent consumption nor compensated structural model mismatches.

	ZUSAMMENFASSUNG	I
	ABSTRACT	III
	SYMBOLVERZEICHNIS	XI
1	EINLEITUNG UND ZIELSETZUNG	15
1.1	Einleitung	15
1.2	Zielsetzung und Aufbau	16
2	CHROMATOGRAPHIE	17
2.1	Das chromatographische Prinzip und seine Varianten	17
2.2	Kapillare Elektrochromatographie (CEC)	18
2.3	Kontinuierliche chromatographische Prozesse	20
2.3.1	Annulare Chromatographie (AC)	20
2.3.2	Kontinuierliche annulare Elektrochromatographie	
	(Continuous Annular Electro-Chromatography, CAEC) - eine Kombinat	ion
	der Kapillarelektrophorese und der annularen Chromatographie	21
2.3.3	Der MCSGP-Prozess (quasi-kontinuierlich)	22
3	STAND DER TECHNIK: REGELUNG, MODELLBASIERTE	
	OPTIMIERUNG UND PROZESSFÜHRUNG	
	CHROMATOGRAPHISCHER PROZESSE	26
3.1	Iterative Stellgrößenoptimierung der Batch Chromatographie	26
3.1.1	Die Idee	26
3.1.2	Allgemeine mathematische Formulierung nach Gao (26)	29
3.1.3	Schätzung der Gradienten und Gewährleistung einer hinreichenden	
	Schätzgenauigkeit	30

3.2	Kontinuierliche Verfahren	33
3.2.1	Klassische Regelungskonzepte	34
3.2.2	Modellbasierte lineare Regelungskonzepte (Model Predictive Control)	34
3.2.3	Online-Optimierung von SMB-Prozessen	35
3.2.4	Modellbasierte optimierende Regelung (optimizing MPC)	36
3.3	Der Kern dieser Arbeit: Der Transfer von iterativen Optimierungsstrategier	1
	aus der Batch-Chromatographie auf kontinuierliche Verfahren	39
4	MODELLIERUNG CHROMATOGRAPHISCHER PROZESSE	42
4.1	Modellierung des chromatographischen Phasensystems	42
4.2	Modellierung der annularen Elektrochromatographie	43
4.2.1	Transportphänomene, Vereinfachungen und resultierende Massenbilanz	44
4.2.2	Randbedingungen	47
5	NUMERISCHE SIMULATION DES 2D-LK-MODELLS	48
5.1	Einleitung	48
5.2	Herleitung des expliziten EHOC ADSI-Schemas mit zustandsabhängigem Quellterm (EHOC ADSI)	51
5.3	Einbettung der ODE des Quellterms zur Definition der Quelloperatoren	
	\mathcal{S}^{1*} und \mathcal{S}^{2*} am Beispiel des Lumped Kinetic Modells	58
5.4	Übersetzung der Operatornotation in Matrizen für zwei Komponenten	63
5.5	Vergleich des EHOC ADSI Verfahrens mit einem etablierten Verfahren	68
5.5.1	Vorüberlegung	68
5.5.2	Das Monotonie-Kriterium als Maß für numerische Stabilität	69
5.5.3	Vergleich 1: Quadratischer zentraler Konzentrationsimpuls	70

6	EFFIZIENZSTEIGERUNG DER ITERATIVEN			
	STELLGRÖßENOPTIMIERUNG DURCH GEOMETRISCHE			
	BERECHNUNG ZUSÄTZLICHER BETRIEBSPUNKTE	94		
7	ITERATIVE STELLGRÖßENOPTIMIERUNG DER ANNULAREN	1		
	ELEKTRO-CHROMATOGRAPHIE	97		
7.1	Modellierung und Simulation des CAEC-Apparates	98		
7.2	Monotonie der Gradienten: Berechnung der Ausgangsgrößen und			
	Feinjustierung der Sammelscheibe	102		
7.3	Steuerung der Sammelscheibe bei Eingangssprüngen	105		
7.4	Steuerbarkeit der vollständigen Fraktionierung in die Sammelbehälter bei			
	Basislinientrennung dreier Komponenten	108		
7.5	Iterative Betriebsparameteroptimierung für die kontinuierliche annulare			
	Elektrochromatographie	110		
7.5.1	Numerische Ergebnisse zu Fallstudie 1	113		
7.5.2	Fallstudie 2: Einbeziehung einer Parameterschätzung als Teil der			
	Betriebsparameteroptimierung	115		
7.6	Modellvalidierung	120		
7.6.1	Einleitung und experimentelles Vorgehen	120		
7.6.2	Massentransfer und Adsorptionsparameter	121		
7.6.3	Beschreibung der Hydrodynamik	125		
7.7	Implementierung am Prototypen	127		
8	MODELLIERUNG UND MODELLBASIERTE OPTIMIERUNG DE	ES		
	MCSGP-PROZESSES ZUR TRENNUNG DREIER AMINOSÄUREN	N 131		
8.1	Modellierung des MCSGP-Prozesses	131		

8.2	Beispielsystem: Hochleistungsflüssigkeitschromatographie zur präparativen			
	Trennung von Tryptophan, Phenylalanin und Methionin.	132		
8.3	Modellvereinfachung	133		
8.4	Bestimmung der Modellparameter (offline)	134		
8.4.1	Bestimmung der Isothermenparameter aus den Gleichgewichtsbeladung	en 135		
8.4.2	Bestimmung des effektiven Massentransferwiderstandes	135		
8.4.3	Modellvalidierung	137		
8.5	Die Effizienz des 6-Säulen MCSGP-Prozesses zur Trennung der drei			
	Aminosäuren im Vergleich zu sequentieller Batch-Chromatographie	138		
8.5.1	Definition des Trennproblems und des verfahrenstechnischen			
	Optimierungsproblems	138		
8.5.2	Optimale Prozessführung der sequentiellen Batch-Chromatographie	140		
8.5.3	Optimale Prozessführung des MCSGP-Prozesses	141		
8.5.4	Diskussion und Fazit	143		
9	ONLINE-OPTIMIERUNG DES MCSGP-PROZESSES DURCH			
9	ONLINE-OPTIMIERUNG DES MCSGP-PROZESSES DURCH ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER			
9		145		
9 9.1	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER	145		
	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN			
9.1	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit	146		
9.1 9.2	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems	146 150		
9.1 9.2 9.3	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung	146 150 151 153		
9.1 9.2 9.3 9.4	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung Studie 1: Algorithmische Validierung und Wahl der Stellgrößen	146 150 151 153 153		
9.1 9.2 9.3 9.4 9.4.1	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung Studie 1: Algorithmische Validierung und Wahl der Stellgrößen Das Testsystem	146 150 151 153 153		
9.1 9.2 9.3 9.4 9.4.1 9.4.2	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung Studie 1: Algorithmische Validierung und Wahl der Stellgrößen Das Testsystem Konfiguration 1: QDe, QDeP und T als Stellgrößen	146 150 151 153 153 158		
9.1 9.2 9.3 9.4 9.4.1 9.4.2 9.4.3	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung Studie 1: Algorithmische Validierung und Wahl der Stellgrößen Das Testsystem Konfiguration 1: QDe, QDeP und T als Stellgrößen Konfiguration 2: QFe, QDeP und T als Stellgrößen	146 150 151 153 153 155 158		
9.1 9.2 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4	ITERATIVE STELLGRÖßENOPTIMIERUNG BEI DER TRENNUNG DREIER AMINOSÄUREN Steuerbarkeit und Beobachtbarkeit Formulierung des Optimierungsproblems Algorithmus und numerische Lösung Studie 1: Algorithmische Validierung und Wahl der Stellgrößen Das Testsystem Konfiguration 1: QDe, QDeP und T als Stellgrößen Konfiguration 2: QFe, QDeP und T als Stellgrößen Konfiguration 3: QDe, QDeP, QFe und T als Stellgrößen	146 150 151 153 153 155 158 159		

9.5	Studie 2: Fallstudie zur Trennung der drei Aminosäuren	
	Tryptophan, Methionin und Phenylalanin mittels des MCSGP-Prozesses	167
9.5.1	Experimentelles Design	167
9.5.2	Ergebnisse und Diskussion	168
9.6	Echtzeitfähigkeit	169
10	ZUSAMMENFASSUNG UND DISKUSSION	172
11	AUSBLICK	175
A	ANHANG	177
A.1	Differenzenformeln	177
A.2	General Rate Modell nach (26) für den Vergleich zwischen modellbasierter	
	und geometrischer Berechnung zusätzlicher Betriebspunkte	178
A.3	Durchbruchskurven der Aminosäuren auf Kromasil C18	179
A.4	Berechnung zusätzlicher Betriebspunkte für den MCSGP-Prozess	184
A.5	Softwarestruktur der Stellgrößenoptimierung für den MCSGP-Prozess	184
12	LITERATURVERZEICHNIS	188