Herausgeber: Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer

RWTHAACH UNIVERS

Fabian Müller

Model Order Reduction:

Proper Generalized Decomposition in the Context of Non-linearity and Motion in Electrical Machines

Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung

Band 57

Model Order Reduction: Proper Generalized Decomposition in the Context of Non-linearity and Motion in Electrical Machines

Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Herrn Fabian Müller, M.Sc.

aus Würselen

Berichter: Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer Univ.-Prof. Ph.D. habil. Stéphane Clénet

Tag der mündlichen Prüfung: 04.09.2023

Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung

Band 57

Fabian Müller

Model Order Reduction: Proper Generalized Decomposition in the Context of Non-linearity and Motion in Electrical Machines

Shaker Verlag Düren 2024

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the internet at http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2023)

Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung

Herausgeber:

Univ.-Prof. Dr.-Ing. habil. Dr. h.c. mult. Kay Hameyer Institut für Elektrische Maschinen RWTH Aachen 52056 Aachen

Copyright Shaker Verlag 2024 All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-9515-9 ISSN 1861-3799

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de To my beloved wife Corinna. Thank you for always having my back.

Acknowledgment

This thesis is the result of my research during the last five years at the Institute of Electrical Machines. First and foremost, I want to express my sincerest gratitude to Professor Kay Hameyer for his mentorship. His commitment to excellent research motivated me to pursue my own academic goals and the knowledge I acquired under his guidance is invaluable. Secondly, I would like to thank my second supervisor Professor Stéphane Clénet. Our discussions about the model order reduction methods allowed me to acquire a fast access to the topic and helped me with possible aspects of implementation.

I appreciate the time and the interesting discussions with all colleagues at the IEM. Particular recognition must be expressed towards Andreas Thul, Christian Krüttgen and Gregor Glehn, as you introduced me to the simulation of electromagnetic fields. Without you, I don't know if my interest to numerical field simulations would have increased to this extent. I would also like to thank Jan Rickwärtz, Johann Kolb, and Sebastian Mönninghoff for their remarkable work ensuring steady working conditions with regard to the IT infrastructure. The countless hours you've worked to keep the system running and the continuous improvement have helped all of us. Thank you! Thank you Xiao Xiao for keeping iMOOSE running and developing it further with me. It was great to work with you and it would have been lonely in the numerics group without you. Also I really enjoyed the work-specific and personal exchange with Kai Deng, Hujung Peng, Liguo Yang and Maximilian Lauerburg.

Last but not least, without my family and their support this endeavour would not have been possible.

Corinna, your constant encouragement as well as always being there listening to my problems helped me a lot. We discussed countless number of issues, which allowed me to approach them from a different angle of perspective. Further, your linguistic proof-reading was a great relief.

Abstract

Motivation, Goal and Task of the Dissertation

In the design stage of electrical machines, the Finite Element Analysis is one of the most widely used numerical simulation tools to analyse electromagnetic fields and the machines' behaviour. It is able to compute complicated geometries in two- and three-dimensions with a good accuracy. However, this numerical approach may involve a huge number of unknowns, which have to be determined. To give general answers to physical and technical relevant questions, several problem classes can be distinguished. Basically, there are transient processes resulting in eddy currents, which have to be resolved in space and time. The non-linearity of the flux-guiding ferromagnetic material has to be considered and the relative motion between static and moving parts of the machine is crucial. Here, parameters vary depending on time or space. The degrees of freedom associated with the simulations, particularly if many operating points or machine design parameter combinations have to be studied, increases significantly.

To reduce the degrees of freedom of the set model, model order reduction techniques can be applied. Most of the reduction approaches are limited to linear problem formulations. This means that the achieved reduction of degrees of freedom comes at the cost of a decreased accuracy, which is unwanted. This is due to the fact that the model order reduction approach requires the underlying problem to be separable. This is not given if a problem class with non-linear material characteristics or relative motion is involved. The non-linear saturation depends on the operating point and is in general non-separable. Non-linear iteration schemes are obligatory to resolve the material behaviour, which can introduce numerical instabilities and increase the computational effort of the reduced model significantly. If the number of degrees of freedom or the connection of these changes, due to geometrical adjustments or relative motion, the underlying system of equations varies in size and sparsity pattern, which interferes with the required separation property.

A promising model order reduction technique to enable the computation of electromagnetic fields is the Proper Generalized Decomposition. It can be adapted and extended with dedicated numerical techniques to cancel these limitations to be employable in the simulation of electrical machines. To cope with the computational load of the evaluation of the non-linear material saturation, the Proper Generalized Decomposition is combined with the Discrete Empirical Interpolation Method. To lift the limitation of the Proper Generalized Decomposition to conformal meshes, techniques such as inhomogeneous Dirichlet constraints and Lagrange Multipliers are employed. The Proper Generalized Decomposition is adapted and extended with these methods to consider the different requirements of the numerical field model to reduce the degrees of freedom as well as the computational effort while keeping a technical relevant accuracy.

Scientific Contributions

The field of model order reduction techniques states an area of conflict between decreasing the degrees of freedom and computational effort while keeping a desired technical accuracy of the solutions. In order to obtain a reduced representation, the Proper Generalized Decomposition is employed. It is based on an enrichment process, which does not rely on the knowledge of previously computed solutions and enriches information until the defined accuracy is achieved. In this work, the Proper Generalized Decomposition is implemented with particular focus on the simulation of low frequent electromagnetic fields as can be found in electrical machines. A combination of the Proper Generalized Decomposition with three-dimensional magnetodynamic formulations is constructed and studied on a benchmark problem in terms of accuracy of local and global quantities and reduction of degrees of freedom. To enable the parametric study of electrical machines, the Proper Generalized Decomposition is extended to field excitation related parameters, such as the current angle and amplitude in the rotating system of the machine's rotor, the direct current of an electrically excited synchronous machine and the magnetic remanence flux density of hard magnetic material. An approach is developed to include the relative motion of the rotor as a parameter into the Proper Generalized Decomposition by using the Sliding Interface Technique, which is based on Lagrange Multipliers, to lift the restriction to conformal meshes. The derived algorithms are applied to the example simulation of a synchronous generator coupled to the grid. To be able to assess the maximum possible factor of reduction in terms of degrees of freedom and computational effort, the standard Finite Element analysis is compared to the Proper Generalized Decomposition in detail.

Contents

List of Abbreviations x			
1.	Intro	oduction	1
2.	Fund 2.1	lamentals of Electromagnetic Fields in Electrical Machines	5
	$\frac{2.1}{2.2}$	Non-linear Materials	6
	2.3.	Problem Classes	8
	2.4.	Fields and Potentials	9
		2.4.1. \boldsymbol{A} – V -formulation	9
		2.4.2. $T - \Omega$ -formulation	10
		2.4.3. Galerkin Method	11
		2.4.4. Weak Form: $\mathbf{A} - V$	13
		2.4.5. Weak Form: $T - \Omega$	15
		2.4.6. System Symmetrization	15
3.	Finit	Finite Elements	
	3.1.	Nodal Elements	17
	3.2.	Edge Elements	18
	3.3.	Change of Coordinates	18
	3.4.	Gauß Integration	19
	3.5.	Finite Element Analysis	20
4.	Mod	el Order Reduction	21
	4.1.	Proper Orthogonal Decomposition	21
	4.2.	Proper Generalized Decomposition	24
5.	The	pretical Examples	27
•.	5.1.	Transient Problems	27
	-	5.1.1. Magnetic Vector Potential and Electric Scalar Potential	28
		5.1.1.1. Combining PGD and $\mathbf{A} - V$ formulation	28
		5.1.1.2. Update Function	33
		5.1.1.3. Convergence Criteria	34
		5.1.1.4. Two-Dimensional Eddy Current Problem	35

		5.1.2.	Electric Vector Potential and Scalar Magnetic Potential	40	
			5.1.2.1. Employing the PGD in the $T-\Omega$ -formulation	41	
			5.1.2.2. Application to Three-Dimensional Eddy Cur-		
			rent Problem	43	
		5.1.3.	TEAM Workshop Problem No. 7	52	
		5.1.4.	General Feasibility for Transient Problems	60	
	5.2.	Non-linear Problems			
		5.2.1.	Fixed-Point Iteration	61	
		5.2.2.	Newton Method	63	
		5.2.3.	Consideration of Non-linearities in the PGD	64	
		5.2.4.	Discrete Empirical Interpolation Method	65	
		5.2.5.	Synchronous Machine with Surface Mounted Magnets	68	
		5.2.6.	Synchronous Machine with Buried Magnets	75	
		5.2.7.	Feasibility for Non-linear Problems	80	
	5.3. Parametric Problems		81		
		5.3.1.	Remanence Flux Density of Hard Magnetic Materials	81	
		5.3.2.	Current Excitation	83	
		5.3.3.	Application to Surface PMSM	84	
		5.3.4.	General Feasibility for Parametric Problems	89	
	5.4. Non-conform Problems		onform Problems	90	
		5.4.1.	Definition of Motion	91	
		5.4.2.	Treatment of Non-connected Domains in the PGD $$	91	
			5.4.2.1. Inhomogeneous Dirichlet Conditions	92	
			5.4.2.2. Bidirectional Interface with Lagrange Mul-		
			tipliers	95	
		5.4.3.	Stationary Application	99	
		5.4.4.	Application to Surface-PMSM involving Rotational		
			Motion	105	
		5.4.5.	Conclusions	107	
~	<u> </u>				
6.	Simu	ilation o	of a Synchronous Generator With a Connected Passive	100	
	Rect	Counti	n m Turn ag	100	
	0.1. 6 9	Weel	Coupled Simulation of a Sumphronous Conceptor	109	
	0.2.	CO1	Coupled Simulation of a Synchronous Generator	110 119	
		0.2.1.	Case 2: With Connected Filter	115 115	
		0.2.2. 6 9 9	Case 2: Operating Point at Reduced Speed	119 119	
		0.2.3. 6.9.4	Conclusions for the Technical Application	191	
		0.2.4.	Conclusions for the rechnical Application	121	

7.	Computational Effort	123			
	7.1. \mathcal{O} -notation	123			
	7.2. Complexity of the FE-System	124			
	7.3. Complexity of the POD	127			
	7.4. Complexity of the PGD	127			
	7.4.1. Space Computation	127			
	7.4.2. Parameter Computation	129			
	7.4.3. Matrix Properties of Selected Examples	130			
	7.5. Evaluation of Computational Effort	135			
8.	Conclusions and Outlook	137			
Α.	Consideration of Boundary Constraints	141			
	A.1. Unary Boundary Conditions	141			
	A.2. Binary Boundary Conditions	142			
Sy	nbols	145			
Bil	liography	149			
Own Publications					
Su	Supervised final theses				
Cu	Curriculum Vitae				

List of Abbreviations

ADS	Alternative Direction Scheme
DEIM DOF	Discrete Empirical Interpolation Method degrees of freedom
FEM	finite element method
GP	Gauß points
IEM iMOOSE/pyMOOSE	Institute of Electrical Machines innovative Modern Object Oriented Solver Environment
MOR	model order reduction
NoS	number of snapshots
PGD PMSM POD	Proper Generalized Decomposition permanent magnet synchronous machine Proper Orthogonal Decomposition
ROM RSST RWTH	reduced order model Rotational Single Sheet Tester Rheinisch-Westfälische Technische Hochschule
SVD	singular value decomposition
TEAM	Testing Electromagnetic Analysis Methods