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In the design stage of electrical machines, the Finite Element Analysis is one of the most widely used 
numerical simulation tools to analyse electromagnetic fields and the machines’ behaviour. It is able 
to compute complicated geometries in two- and three-dimensions with a good accuracy. However, 
this numerical approach may involve a huge number of unknowns, which have to be determined. To 
give general answers to physical and technical relevant questions, several problem classes can be 
distinguished. Basically, there are transient processes resulting in eddy currents, which have to be 
resolved in space and time. The non-linearity of the flux-guiding ferromagnetic material has to be 
considered and the relative motion between static and moving parts of the machine is crucial. Here, 
parameters vary depending on time or space. The degrees of freedom associated with the simula-
tions, particularly if many operating points or machine design parameter combinations have to be 
studied, increases significantly. 

To reduce the degrees of freedom of the set model, model order reduction techniques can be applied. 
Most of the reduction approaches are limited to linear problem formulations. This means that the 
achieved reduction of degrees of freedom comes at the cost of a decreased accuracy, which is 
unwanted. This is due to the fact that the model order reduction approach requires the underlying 
problem to be separable. This is not given if a problem class with non-linear material characteristics 
or relative motion is involved. The non-linear saturation depends on the operating point and is in 
general non-separable. Non-linear iteration schemes are obligatory to resolve the material behavi-
our, which can introduce numerical instabilities and increase the computational effort of the reduced 
model significantly. If the number of degrees of freedom or the connection of these changes, due to 
geometrical adjustments or relative motion, the underlying system of equations varies in size and 
sparsity pattern, which interferes with the required separation property.

A promising model order reduction technique to enable the computation of electromagnetic fields is 
the Proper Generalized Decomposition. It can be adapted and extended with dedicated numerical 
techniques to cancel these limitations to be employable in the simulation of electrical machines.
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Abstract

Motivation, Goal and Task of the Dissertation

In the design stage of electrical machines, the Finite Element Analysis is one
of the most widely used numerical simulation tools to analyse electromagnetic
fields and the machines’ behaviour. It is able to compute complicated
geometries in two- and three-dimensions with a good accuracy. However,
this numerical approach may involve a huge number of unknowns, which have
to be determined. To give general answers to physical and technical relevant
questions, several problem classes can be distinguished. Basically, there are
transient processes resulting in eddy currents, which have to be resolved in
space and time. The non-linearity of the flux-guiding ferromagnetic material
has to be considered and the relative motion between static and moving
parts of the machine is crucial. Here, parameters vary depending on time or
space. The degrees of freedom associated with the simulations, particularly
if many operating points or machine design parameter combinations have to
be studied, increases significantly.
To reduce the degrees of freedom of the set model, model order reduction
techniques can be applied. Most of the reduction approaches are limited
to linear problem formulations. This means that the achieved reduction
of degrees of freedom comes at the cost of a decreased accuracy, which is
unwanted. This is due to the fact that the model order reduction approach
requires the underlying problem to be separable. This is not given if a
problem class with non-linear material characteristics or relative motion is
involved. The non-linear saturation depends on the operating point and
is in general non-separable. Non-linear iteration schemes are obligatory to
resolve the material behaviour, which can introduce numerical instabilities
and increase the computational effort of the reduced model significantly.
If the number of degrees of freedom or the connection of these changes,
due to geometrical adjustments or relative motion, the underlying system
of equations varies in size and sparsity pattern, which interferes with the
required separation property.
A promising model order reduction technique to enable the computation
of electromagnetic fields is the Proper Generalized Decomposition. It can
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be adapted and extended with dedicated numerical techniques to cancel
these limitations to be employable in the simulation of electrical machines.
To cope with the computational load of the evaluation of the non-linear
material saturation, the Proper Generalized Decomposition is combined
with the Discrete Empirical Interpolation Method. To lift the limitation
of the Proper Generalized Decomposition to conformal meshes, techniques
such as inhomogeneous Dirichlet constraints and Lagrange Multipliers are
employed. The Proper Generalized Decomposition is adapted and extended
with these methods to consider the different requirements of the numerical
field model to reduce the degrees of freedom as well as the computational
effort while keeping a technical relevant accuracy.

Scientific Contributions

The field of model order reduction techniques states an area of conflict
between decreasing the degrees of freedom and computational effort while
keeping a desired technical accuracy of the solutions. In order to obtain a
reduced representation, the Proper Generalized Decomposition is employed.
It is based on an enrichment process, which does not rely on the knowledge
of previously computed solutions and enriches information until the defined
accuracy is achieved. In this work, the Proper Generalized Decomposition
is implemented with particular focus on the simulation of low frequent
electromagnetic fields as can be found in electrical machines. A combination
of the Proper Generalized Decomposition with three-dimensional magneto-
dynamic formulations is constructed and studied on a benchmark problem
in terms of accuracy of local and global quantities and reduction of degrees
of freedom. To enable the parametric study of electrical machines, the
Proper Generalized Decomposition is extended to field excitation related
parameters, such as the current angle and amplitude in the rotating system of
the machine’s rotor, the direct current of an electrically excited synchronous
machine and the magnetic remanence flux density of hard magnetic material.
An approach is developed to include the relative motion of the rotor as a
parameter into the Proper Generalized Decomposition by using the Sliding
Interface Technique, which is based on Lagrange Multipliers, to lift the
restriction to conformal meshes. The derived algorithms are applied to the
example simulation of a synchronous generator coupled to the grid. To be
able to assess the maximum possible factor of reduction in terms of degrees
of freedom and computational effort, the standard Finite Element analysis
is compared to the Proper Generalized Decomposition in detail.
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