Beitrag zur Untersuchung von passiven planaren Hochgeschwindigkeitsmagnetlagern für die Anwendung in der Mikrosystemtechnik

Markus Klöpzig

Dissertation zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt

der Fakultät für Maschinenbau der Technischen Universität Ilmenau

am 17.09.2001

Berichterstatter

Prof. Dr.-Ing. habil. H. Wurmus, TU Ilmenau Prof. Dr.-Ing. habil. E. Kallenbach, TU Ilmenau Prof. Dr.-Ing. habil. R. Werthschützky, TU Darmstadt

Tag der wissenschaftlichen Aussprache: 25.07.2002

Berichte aus der Mikromechanik

Markus Klöpzig

Beitrag zur Untersuchung von passiven planaren Hochgeschwindigkeitsmagnetlagern für die Anwendung in der Mikrosystemtechnik

Shaker Verlag Aachen 2003

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Klöpzig, Markus:

Beitrag zur Untersuchung von passiven planaren Hochgeschwindigkeitsmagnetlagern für die Anwendung in der Mikrosystemtechnik/Markus Klöpzig.

Aachen: Shaker, 2003

(Berichte aus der Mikromechanik)
Zugl.: Ilmenau, Techn. Univ., Diss., 2002

ISBN 3-8322-1090-3

Copyright Shaker Verlag 2003 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-1090-3 ISSN 0947-2398

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Zusammenfassung - Abstract

Diese Arbeit behandelt die folgenden Punkte zum Thema passive Hochgeschwindigkeitsmagnetlager:

- Erläuterung des Standes der Technik für rotatorische und translatorische Magnetlager
- Darstellung der Zielstellung der Arbeit auf Basis des Standes der Technik
- Ableitung der analytischen Zusammenhänge zum Entwurf von passiven Magnetlagern
- Diskussion von Konstruktionsvarianten und Erläuterung der realisierten Konstruktion
- Durchführung der Modellierung des elektromechanischen Systems und Ableitung von Schlußfolgerungen zur Weiterentwicklung des Lagersystems
- Erläuterung der Vor- und Nachteile beim Einsatz der Mikrosystemtechnik für ausgewählte Lagerkomponenten und Vorschlag eines Polygonspiegelarrays

This thesis investigates the following items on high speed magnetic bearings:

- Discussion on the state of technology of rotational and translational passive magnetic bearing systems
- Presentation of thesis objectives based on the state of the technology
- Derivation of analytical formulas for the design of passive magnetic bearings
- Discussion on design variations and explanation of the actual mechanical design
- Derivation of an analytical model for the electro-mechanical system and conclusions for further development of the bearing system
- Analysis of the advantages and disadvantages of applying micro-mechanical components in bearing systems and proposals for the application of magnetic bearings in miniaturized polygonal mirrors

Inhaltsverzeichnis

1	Star	nd der	Technik Motivation und Aufgabenstellung	3				
	1.1	tung	3					
	1.2	Begrif	fsdefinitionen	4				
	1.3	Stand	der Technik	5				
		1.3.1	Passive rotatorische Magnetlager	6				
		1.3.2	Passive lineare Magnetlager	11				
		1.3.3	Passive mikrotechnische Magnetlager	14				
	1.4	Vergle	ich und Bewertung der passiven Magnetlager	16				
	1.5	Ableit	ung der Zielstellung der Arbeit	19				
2	Ent	Entwurf und Konstruktion von passiven Magnetlagersystemen 2						
	2.1	Physikalische Grundlagen passiver Magnetlager						
		2.1.1	Reduktion der Anzahl der instabilen Freiheitsgrade durch					
			geeignete Geometrien	24				
		2.1.2	Vollständige Stabilisierung des Systems	28				
	2.2	Herlei	tung der Zusammenhänge für den magnetischen Grobent-					
		wurf		28				
		2.2.1	Prinzip zur Ermittlung der Lagersteifigkeitsmatrix	29				
		2.2.2	Rotatorisch passive Magnetlager	31				
		2.2.3	Translatorische passive Magnetlager	36				
		2.2.4	Zusammenfassung der Lagercharakteristiken	42				
	2.3	2.3 Herleitungen der Zusammenhänge für den magnetischen Fe						
		2.3.1	Herleitung Biot-Savartsches Gesetz	43				
		2.3.2	Elementarstromtheorie für Permanentmagnete	45				
		2.3.3	Ableitung von Berechnungsroutinen	46				
		2.3.4	Alternative Methoden und Vor-und Nachteile der Methoden	52				
	2.4	Diskus	ssion der Materialeigenschaften permanentmagnetischer Werk-					
		stoffe		53				
	2.5	Analy	se von Konstruktionsvarianten	59				
		2.5.1	Auslegung der passiven Lagerkomponente	60				
		2.5.2	Auslegung der aktiven Lagerkomponente	64				
		2.5.3	Weitere Lagerkomponenten	70				
	2.6	Konst	ruktive Realisierung eines Designs	71				
		2.6.1	Auswahl der realisierten Variante und konstruktive Umset-					
			zung	71				

		2.6.2	Berechnungs- und Meßergebnisse	. 73		
3	Modellierung des passiv magnetgelagerten Antriebssystems 79					
	3.1	Model	lbildung für das elektromechanische System	. 79		
		3.1.1	Einführung	. 79		
		3.1.2	Herleitung des allgemeinen Modells für das Magnetlager-			
			system	. 80		
	3.2	Ableit	ung von Sonderfällen	. 87		
		3.2.1	Bewegungen in der xy-Ebene	. 87		
		3.2.2	Berechnung des Einflusses der radialen Unwuchtanregung	. 87		
		3.2.3	Simulation des Antriebs	. 90		
		3.2.4	Simulation der Antriebsrückwirkung	. 95		
		3.2.5	Simulation der Bewegung in der z-Achse	. 101		
		3.2.6	Simulation der Systemreaktion auf Verkippung	. 103		
	3.3	Zusan	nmenfassung der Ergebnisse der mechanischen Modellbildung	105		
4	Technologische Realisierung in Mikrosystemtechnik 10'					
	4.1	Einleit	tung	. 107		
	4.2	Vor- u	nd Nachteile beim Einsatz der Mikrosystemtechnik	. 107		
		4.2.1	Vor- und Nachteile der mikrotechnischen Herstellung von			
			Spulensystemen	. 107		
		4.2.2	Vor- und Nachteile der mikrotechnischen Herstellung von			
			Permanentmagnetschichten	. 109		
	4.3	Mikro	technischer Lösungsvorschlag	. 112		
5	Zusammenfassung und Ausblick					
\mathbf{A}	Symbolverzeichnis					