TEL AVIV UNIVERSITY THE SACKLER SCHOOL OF MEDICINE DEPARTMENT OF HUMAN MICROBIOLOGY

INTERACTIONS OF *KLEBSIELLA PNEUMONIAE* WITH HOST CELLS AND THEIR CONTRIBUTION TO PATHOGENESIS

THESIS SUBMITTED FOR THE DEGREE OF "DOCTOR OF PHILOSOPHY" BY

HANY SAHLY

SUBMITTED TO THE SENATE OF THE TEL AVIV UNIVERSITY MARCH, 2002

This work was carried out under the supervision of Professor Itzhak Ofek

Schriften des Instituts für Medizinische Mikrobiologie und Virologie der Christian-Albrechts-Universität zu Kiel

Band 6

Hany Sahly

Interactions of *Klebsiella pneumoniae* with Host Cells and their Contribution to Pathogenesis

Shaker Verlag Aachen 2003

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Sahly, Hany:

Interactions of *Klebsiella pneumoniae* with Host Cells and their Contribution to Pathogenesis/Hany Sahly.

Aachen: Shaker, 2003

(Schriften des Instituts für Medizinische Mikrobiologie und Virologie der Christian-Albrechts-Universität zu Kiel; Bd. 6)

Zugl.: Tel Aviv Univ., Diss., 2002

ISBN 3-8322-1656-1

Copyright Shaker Verlag 2003

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 3-8322-1656-1 ISSN 0948-7840

> Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

CONTENTS

List of abbreviations

Abstract

1.	Introduction	1
1.1	Clinical significance of Klebsiella	1
1.2	Pathogenicity factors of Klebsiella	3
1.2.1	Adhesins: Their role in adhesion to and invasion of non-phagocytic cells	3
1.2.2	Lipopolysaccharides: Their role in complement activation and lung collectin binding	6
1.2.3	Capsular polysaccharides	7
1.3	Klebsiella and ankylosing spondylitis (AS)	10
1.3.1	Recent immunological data linking immune response to <i>Klebsiella</i> capsular antigens and AS	12
2.	Objectives of the thesis	13
3.	Materials and methods	15
3.1	List of materials and chemicals	15
3.2.	Bacterial strains	19
3.3	Human SP-D and SP-D mutants	20
3.4	Patients and controls	21
3.5	Cell lines and culture conditions	21
3.6	Isolation of the noncapsulated mutants	22
3.7	Genetic manipulation and construction of the capsule- switched derivative	22
3.8	Determination, visualization and analysis of capsular	26

PAGE

polysaccharides by nuclear magnetic resonance spectroscopy

	porysacenariaes by nuclear magnetic resonance spectroscopy	
3.9	Bacteriocin typing	27
3.10	Pulsed-field gel electrophoresis (PFGE)	27
3.11	Hemagglutination assay	28
3.12	Internalization and adhesion assays in ileocecal and bladder epithelial cells	29
3.13	Assay of intracellular survival and replication in ileocecal epithelial cells	30
3.14	Purification and gel electrophoresis of LPS	30
3.15	Lectin and immunoblotting of LPS	31
3.16	Assay for SP-D-induced bacterial agglutination	31
3.17	Adhesion assay to alveolar epithelial cells	32
3.18	Preparation of PMNL	32
3.19	Chemiluminescence (CL) response	32
3.20	IgG-binding to bacteria	33
3.21	C3b-binding to bacteria	34
3.22	Statistical analysis	34
4.	Results I: Internalization, adhesion and survival assays in ileocecal epithelial cells	35
4.1	Genetic, phenotypic, and serological characterization of the parent strains, noncapsulated variants and capsule-switched derivative	35
4.2	Relationship between capsule formation, adhesion, and internalization into epithelial cells	41
4.3	Bacterial intracellular persistence and replication	48
4.4	Discussion I: interaction between <i>Klebsiella</i> and epithelial cells	49

5.	Results II: Interaction with SP-D	54
5.1 5.2	SP-D potently agglutinates an O3, but not an O1, serotype of <i>Klebsiella</i> O1 and O3 LPS differ in their ability to inhibit SP-D dependent agglutination	54 55
5.3	Binding of SP-D to <i>Klebsiella</i> LPS is influenced by the presence of O-antigen	56
5.4	SP-D shows a higher apparent affinity for mature LPS of the O3 serotype	59
5.5	SP-D selectively binds to mature LPS of the O3 and O5 serotypes	61
5.6	SP-D does not bind to S-LPS from <i>Klebsiella</i> serotypes commonly associated with <i>Klebsiella</i> pneumonia	63
5.7	SP-D preferentially inhibits the adhesion of the O3 serotype of <i>Klebsiella</i> to epithelial cells	64
5.8	The effects of SP-D on bacterial adhesion require the multimerization of trimeric subunits	66
5.9	Asparagine-linked glycosylation of SP-D is not required for inhibition of epithelial adhesion	68
5.10	Discussion II: Interaction of Klebsiella serotypes with SPD	70
5.10.1	Interactions with "smooth" forms of LPS	70
5.10.2	Serotype-dependent inhibition of epithelial adhesion	73
6.	Results III: Interaction with PMNL	77
6.1	Relationship between capsular type, capsule formation and PMNL stimulation	77
6.2	IgG- and C3b-binding to bacteria in relation to the CL-response	81
6.3	Discussion III: Interaction with PMNL	82
7.	General overview and concluding remarks	85
6	References	88

LIST OF ABBREVIATIONS

Aqua bidest.	bidestilled water
Arg	auxotrophic for arginine
Arg^+	prototrophic for arginine
Arg	arginine
AS	ankylosing Spondylitis (Spondylitis ankylosans)
ATCC	American Type Culture Collection
BHI	brain heart infusion
CFU	colony forming unit
CL	chemiluminescence
СРМ	counts per minute
CPS	capsular polysaccharides
CRD	carbohydrate recognition domaines
D ₂ O	deuteriumoxide
GNP	glutaraldehyde natrium cacodylate buffer
EBSS	Earle's balanced salt solution
ELISA	enzyme linked immunosorbent assay
FCS	fetal calf serum
FU	fluorescence unit
HA	hemagglutination
HBSS	Hanks' balanced salt solution
HEPES	(N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid])
His	histidine

His	auxotrophic for histidine
His ⁺	prototrophic for histidine
HLA	human leukocyte antigen
IU	international unit
DMMV	Department of Medical Microbiology and Virology, University of Kiel, Germany
K-Antigen	capsular antigen
Kan	kanamycin
Kan ^r	kanamycin resistance/ resistant
КРТА	Klebsiella pneumoniae origin Tel Aviv
LPS	lipopolysaccharide
MIC	minimal inhibitory concentration
MR/K-HA	mannose resistant, Klebsiella-like hemagglutinin (agglutination)
MSHA	mannose sensitive hemagglutinin (agglutination)
NA	nutrient agar
Nal	nalidixic acid
Nal ^r	nalidixic acid resitant
NB	nutrient broth
NCTC	national collection of type cultures (Britain)
NHS	normal human serum
M9	minimal medium
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline

VIII

PFGE	Pulsed-field gel electrophoresis
R-LPS	rough forms of lipopolysaccharide
PMNL	polymorphonuclear leukocytes
RPMI	Rosewell Park Memorial Institute
RrSP-D	SP-D dodecamers
RrSP-Dser15,20	SP-D trimers
SD	standard deviation
SDS	sodium dodecyl sulfate
S-LPS	smooth forms of lipopolysaccharide
SP-A	surfactant protein A
SP-D	surfactant protein D
spp.	species (plural)
ssp.	Subspecies
Tris	2-amino-2-(hydroxymethyl)-1,3-propandiol
RPM	rotation per minute

ABSTRACT

*Klebsiella*e are opportunistic pathogens that cause severe infections, such as septicemia, pneumonia, urinary tract infections (UTI), and soft tissue infections, especially in hospitalized, immunocompromised patients with severe underlying diseases. *Klebsiellae* are among the most important nosocomial pathogens, being the causative agent in 5-7% of all hospital-acquired infections. They are also thought to induce ankylosing spondylitis (AS) in HLA-B27-positive individuals.

In *Klebsiella*, the main virulence factors are located on the surface of the bacterium. Two major classes of glycoconjugates have been identified on the surface of *Klebsiella*: capsular polysaccharides (CPS) and bacterial lipopolysaccharides (LPS) (Ørskov and Ørskov, 1984, Podschun and Ullmann, 1998). Based on the structural and immunological variability of the CPS and the O-antigen of LPS, *Klebsiellae* have been classified into 77 capsular and nine O-serotypes, which appear to have differential effects on the outcome of *Klebsiella* infections. There is evidence that the differences in their pathogenicity and epidemiological relevance are due to the ability of certain capsular and O-antigens to interact differentially with cellular and humoral components of the innate immune system. The innate immune system's cellular components include serum components such as natural antibodies and proteins of the complement system and secretory tissue proteins, among which are the surfactant protein D and A, and the lung collectins.

In the present study, I focused my research on the interactions of *Klebsiella* with host cells (e.g. nonphagocytic and phagocytic cells) and the role of the CPS and LPS in such interactions. Specifically, I examined: (i) the interactions of capsulated and noncapsulated *Klebsiella* variants

and their capsule-switched derivative with intestinal and bladder epithelial cell lines, (ii) the interactions between noncapsulated variants and the surfactant protein D (SP-D), and (iii) the interactions of capsulated and noncapsulated variants as well as a capsule-switched derivative with polymorphonuclear leukocytes (PMNL). I used the virulent K2 parent strain, which is isolated at a high frequency from septicemia, and the non-virulent K21a, K26, K36 and K50 serotypes. The K36 capsular genes were exchanged with those of the K2 strain. In addition, 20 well-characterized clinical isolates of *Klebsiella* strains expressing the O1, O3, O4 or O5 serotypes were employed. The identity of the variants with the parent strains was assured by various serological and biochemical tests.

The adhesion of K21a, K26, K36, and K50-capsulated *Klebsiella* strains to ileocecal (HCT-8) and bladder (T24) epithelial cell lines was significantly weaker than that of their corresponding spontaneous noncapsulated variants K21a/3, K26/1, K36/3, K50/3. Internalization of the capsulated bacteria by both epithelial cell lines was also significantly reduced. Similarly, a capsule-switched derivative, K2(K36), which had a morphologically larger K36 capsule than the parent strains and produced more capsular material, was less able to invade the ileocecal epithelial cell line than the corresponding K2 parent strain. None of the capsulated strains possessed significant numbers of mannose-sensitive type 1 fimbriae (MSHA), whereas two of the noncapsulated variants, K21a/3 and K50/3, exhibited potent mannose-sensitive hemagglutinating activity. Although hemagglutinating activity attributable to mannose-resistant *Klebsiella* type 3 fimbriae (MR/K-HA) was weak in all strains, several capsulated parent strains exhibited lower titers than their corresponding noncapsulated variants. While the level of adhesion to the ileocecal cells did not differ from that to bladder cells, bacterial internalization by bladder cells was significantly lower than internalization by ileocecal cells, suggesting that bladder cells lack components required for the internalization of *Klebsiella*.

Studies on the interactions of the Klebsiella pneumoniae strains with SP-D revealed that only the noncapsulated phase variants can bind and agglutinate the collectin, consistent with previous findings. Although SP-D bound the core oligosaccharide domain of LPS isolated from all strains, I could show for the first time that, based on the structural variability of the O-antigens, the Klebsiella strains can be functionally classified into those which express SP-D-reactive and those which express SP-D-non-reactive O-antigens. This conclusion is based on experiments in which the LPS molecules of each isolate were electrophoretically separated into those containing the core region (R-LPS) only and those containing the core region linked to the O-antigens with various numbers of oligosaccharides repeating units (S-LPS). Blotting the gels with SP-D revealed that SP-D bound at relatively low concentrations to the core region of LPS obtained from all tested strains, whereas it bound to S-LPS molecules from only some strains. The repeating oligosaccharide units of the O-antigens of the SP-D-reactive strains are rich in mannose and have been identified serologically as O3 and O5 serotypes, whereas those of the non-reactive strains lack these oligosaccharide structures and have been classified as O1 and O4 serotypes. SP-D was more potent at agglutinating noncapsulated phase variants of the Klebsiella-reactive Oserotypes and, as a consequence, more effectively inhibited their adhesion to lung epithelial cells, an initial step in the colonization process necessary for lung infection. This anti-adhesion activity requires the multimerization of trimeric SP-D subunits. Analysis of the O-serotypes of clinical isolates revealed that Klebsiella expressing "non-reactive" LPS O-antigens were isolated at a significantly higher frequency from patients with Klebsiella pneumonia. Our findings suggest that SP-D plays an important role in the natural pulmonary clearance of opportunistic gramnegative bacteria and contributes to known serotypic differences in the pathogenicity of Klebsiella

The K2 parent strain induced low levels of chemiluminescence (CL) in PMNL obtained from both healthy individuals and AS patients, whereas the K36 capsulated strain induced a potent CL response in PMNL from both groups. Furthermore, if the K2 capsule was switched to K36, or if the noncapsulated K2/3 variants were tested, it was found that the capsule switched to the derivative K2(K36) variant, or that the noncapsulated variant induced a significantly higher CL response than the K2 parent strain. These findings are consistent with the notion that the K2 capsule is anti-phagocytic by virtue of its inability to react with PMNL in the presence of serum. The noncapsulated variant K36/3 induced a CL response in PMNL of healthy individuals that was as potent as that induced by the capsulated parent strain. Interestingly, the CL response induced by the noncapsulated variant K36/3 was significantly lower in AS PMNL than in healthy PMNL. These results imply that PMNL from HLA-B27-positive AS patients are less susceptible to stimulation by the serum-treated noncapsulated K36/3 serotype. It is possible that the receptors for the C3b fragment on AS PMNL poorly recognize the C3b ligand on the surface of the K36/3 noncapsulated variant.

These findings suggest that the virulence of *Klebsiella* is determined by interactions between the components of the innate immune system, such as complement, SP-D, and mucosal epithelial cells on the one hand, and the molecular structures of the LPS and CPS on the other. These interactions produce differences in virulence that are expressed as differences in the epidemiological predominance of the various *Klebsiella* serotypes in infections such as pneumonia and septicemia.