Festigkeitsmäßige Auslegung von geschweißten Kunststoffkonstruktionen unter Berücksichtigung von Qualitätsmerkmalen

Zur Erlangung des akademischen Grades eines

Dr.-Ing.

vom Fachbereich Bio- und Chemieingenieurwesen der Universität Dortmund genehmigte Dissertation

vorgelegt von

Dipl.-Ing. Andreas Lietzmann

aus

Bochum

Tag der mündlichen Prüfung: 7. Januar 2004

1. Gutachter: Prof. Dr.-Ing. E. Weiß

2. Gutachter: Prof. Dr.-Ing. B. Künne

Dortmund 2004

Berichte aus dem Apparatebau

Andreas Lietzmann

Festigkeitsmäßige Auslegung von geschweißten Kunststoffkonstruktionen unter Berücksichtigung von Qualitätsmerkmalen

D 290 (Diss. Universität Dortmund)

Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Dortmund, Univ., Diss., 2004

Copyright Shaker Verlag 2004 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2451-3 ISSN 1437-7667

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Zeit als Stipendiat der Graduiertenförderung des Landes Nordrhein-Westfalen sowie als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Chemieapparatebau des Fachbereiches Bio- und Chemieingenieurwesen an der Universität Dortmund.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. E. Weiß für die Anregung und Betreuung dieser Arbeit, seine stete Diskussionsbereitschaft, die wertvollen Hinweise, die kritische Durchsicht und seinen persönlichen Einsatz zur Schaffung einer Arbeitsumgebung, in der ich gerne tätig war.

Herrn Prof. Dr.-Ing. B. Künne möchte ich für sein Interesse an der Arbeit und die freundliche Übernahme des Korreferates danken. Herrn Prof. Dr.-Ing. H. Fahlenkamp und Herrn Prof. Dr. rer. nat. U. Köster danke ich für Ihre Mitwirkung in der Prüfungskommission.

Allen Mitarbeitern der Arbeitsgruppe Chemieapparatebau danke ich herzlich für das stets angenehme Arbeitsklima, ihre Hilfsbereitschaft und die gute Zusammenarbeit.

Abschließend möchte ich meiner Familie danken, die mir das Studium und diese Arbeit ermöglicht hat.

Abstract

Die vorliegende Arbeit liefert einen Beitrag zur festigkeitsmäßigen Dimensionierung und Qualitätssicherung von geschweißten Kunststoffkonstruktionen.

Im ersten Teil der Arbeit wird das Materialverhalten der thermoplastischen Kunststoffe dargestellt. Die Ausführungen umfassen die Morphologie, das Schädigungsverhalten und den Einfluss von Medien auf die Langzeitfestigkeit. Experimentelle Methoden zur Ermittlung des Festigkeitsverhaltens werden zusammenfassend dargestellt und kritisch bewertet. Empfehlungen zur optimalen Werkstoffauswahl werden abgeleitet.

Zur Darstellung des Festigkeitsverhaltens von Kunststoffschweißverbindungen werden die im Apparate- und Rohrleitungsbau vorteilhaft einsetzbaren Schweißverfahren mit den festigkeitsrelevanten Randbedingungen beschrieben. Die Ausführungen beinhalten die zerstörungsfreien und zerstörenden Prüfverfahren für Kunststoffschweißnähte mit einer Bewertung der Nachweisgüte und Aussagefähigkeit. Ausgehend vom Schädigungsverhalten von Schweißnähten bei ein- und mehrachsiger Beanspruchung wird eine neue Bewertungsmethodik abgeleitet, die in einen Nachweis ungeschweißter Bereiche (Nu), einen Nachweis der Schweißnähte gegen Mikrokerben und Bindefehler (Nfl) sowie einen Nachweis gegen die thermische Schädigung des Werkstoffs durch den Schweißprozess (Nfth) aufgeteilt ist. Hinweise zur werkstoffgerechten konstruktiven Ausführung und Fertigung vervollständigen die Ausführungen.

Ausgehend von dem Spannungs-Dehnungs-Verhalten der polymeren Werkstoffe werden Ansätze zur rechnerischen Beschreibung des zeitabhängigen Verhaltens diskutiert. Durch einen neuartigen Ansatz gelingt es, das nichtlinear-viskoelastische Materialverhalten der Thermoplaste in der Beanspruchungsbewertung durch werkstoffspezifische Faktoren abzubilden. Die Beanspruchungsermittlung kann dadurch näherungsweise auf eine linear-viskoelastische Berechnung reduziert werden.

Die Anwendung der erarbeiteten neuen Nachweisführung wird am Beispiel des stehenden, runden Kunststofftanks dargestellt. Durch detaillierte FE-Berechnungen werden dabei funktionale Abhängigkeiten im Festigkeitsverhalten nachgewiesen, die durch die bisher im Stand der Technik beschriebenen Methoden der Beanspruchungsermittlung nicht erfasst werden. Optimale Konstruktionsformen sind dadurch ableitbar

Zur Dimensionierung von Kunststoffkonstruktionen in der betrieblichen Praxis wird eine Methodik erarbeitet, wie sich die Ergebnisse detaillierter FE-Reihenuntersuchungen mittels üblicher Bürosoftware in qualitätsgesicherte Berechnungsblätter umsetzen lassen.

Der Auslastungsgrad und das Sicherheitsniveau von Druckkomponenten aus polymeren Werkstoffen kann auf der Basis der Untersuchungsergebnisse erhöht werden.

Inhal	tsverzeichnis	Seite
Inhalts	sverzeichnis	ı
Abbild	ungsverzeichnis	IV
Tabell	enverzeichnis	VII
Forme	lzeichen	VIII
1 E	Einleitung und Motivation	1
2 E	influssfaktoren auf den Schädigungsvorgang	4
3 N	Morphologie	7
3.1	Amorphe Thermoplaste	7
3.2	Teilkristalline Thermoplaste	7
3.3	Einfluss der Halbzeugherstellung auf die Morphologie	8
4 5	Schädigungs- und Festigkeitsverhalten	10
4.1	Grundsätze beim Konstruieren mit metallischen Werkstoffen	10
4.2	Zur Rissbildung bei Thermoplasten	11
4.3	Messverfahren zur Ermittlung von Dehngrenzen	13
4.4	Zeitstandfestigkeit von Kunststoffen	14
4.5	Einfluss der Betriebsmedien auf die Zeitstandfestigkeit	16
4.6	Testmethoden zur Ermittlung des Medieneinflusses	18
5 S	Schweißen von Kunststoffen	22
5.1	Allgemeine Anmerkungen	22
5.2	Schweißen metallischer Werkstoffe im Vergleich	22
5.3	Einflussfaktoren der Kunststoffschweißung	23
5.	3.1 Plastifizierte Kontaktflächen	23
5.	3.2 Schweißdruck	24
5.	3.3 Zeit	24
5.	3.4 Sauberkeit	25
5.	3.5 Kerben	25
5.4	Schweißverfahren für Kunststoffe	26
5.	4.1 Warmgasziehschweißen	26
5.	4.2 Warmgasextrusionsschweißen	28
5.	4.3 Heizelementstumpfschweißen	29
5.	4.4 Heizwendelmuffenschweißen	31
5.5	Morphologie bei Schweißnähten	32

	5.6	Schädigungsverhalten von Kunststoffschweißnähten	34
	5.6.1	Schädigungsverhalten bei einachsigen Spannungszuständen	34
	5.6	.1.1 Stumpfnähte	34
	5.6	.1.2 Kehlnähte	35
	5.6.2	Schädigungsverhalten bei zweiachsigen Spannungszuständen	37
	5.6.3	Konsequenzen für die Nachweisführung	38
	5.7 Ü	Überblick über verfügbare Langzeit-Schweißfaktoren	38
	5.8 F	Prüfung von Kunststoffschweißverbindungen	39
	5.8.1	Zerstörungsfreie Prüfverfahren	40
	5.8.2	Zerstörende Prüfverfahren	42
	5.9 E	Empfehlungen zur Schweißnahtfertigung und Konstruktion	43
6	Spar	nnungs-Dehnungs-Verhalten polymerer Werkstoffe	45
	6.1	Spannungs-Dehnungs-Verhalten metallischer Werkstoffe im Vergleich	45
	6.2	Spannungs-Dehnungs-Verhalten polymerer Werkstoffe	46
	6.3 N	Mathematische Beschreibung des Spannungs-Dehnungs-Verhaltens	49
	6.4 E	Berücksichtigung des Spannungs-Dehnungs-Verhaltens bei	
	F	estigkeitsnachweisen von Thermoplasten	52
	6.5 E	influss der Querkontraktionszahl	56
	6.6 F	Resümee zum Spannungs-Dehnungs-Verhalten	57
7	Fest	igkeitsnachweis für Thermoplaste	58
	7.1 F	estigkeitsnachweis metallischer Werkstoffe	58
	7.1.1	Design by Rule	58
	7.1.2	Design by Analysis	58
	7.2 F	estigkeitsnachweis für Thermoplaste – Stand der Technik	59
	7.2.1	Festigkeitshypothese	60
	7.2	.1.1 Spannungsbasierter Nachweis	60
	7.2	.1.2 Dehnungsbasierter Nachweis	61
	7.2.2	Zeitstandfestigkeit K	62
	7.2.3	Langzeit-Schweißfaktoren f _l	62
	7.2.4	Abminderung spezifische Zähigkeit A ₁	62
	7.2.5	Abminderung Medieneinfluss A _{2K}	64
	7.2.6	Schadensakkumulation	65
	7.3	Der modifizierte Festigkeitsnachweis für Thermoplaste	65

8	Zι	ır N	Methodik der Beanspruchungsermittlung	68
	8.1	Α	Ilgemeine Anmerkungen	68
	8.2	S	pannungsermittlung bei FE-Analysen	69
	8.2	.1	Globale Spannungen	69
	8.2	.2	Strukturspannungen	70
	8.2	.3	Kerbspannungen	71
	8.3	Е	lementansatzfunktion	72
	8.4	S	ingularitäten	73
	8.5	Е	ignung von Schalenelementen	75
	8.6	Е	lementierung	76
	8.7	В	erechnung der ersten Hauptspannung	77
9	Ar	ıwe	endung des Konzeptes auf Konstruktionselemente eines stehenden	
	kr	eis	zylindrischen Tanks	82
	9.1	D	ie Konstruktion und Fertigung der Tanks	82
	9.2	D	ie kaltverformte Zylinderschale	83
	9.3	٧	Vanddickensprung	85
	9.4	D	er Boden/Zylinder-Übergang	86
	9.4	.1	Zur Modellbildung	87
	9.4	.2	Ergebnisse der Untersuchungen	88
	9.4	.3	Vergleich der Ergebnisse mit dem Stand der Technik	92
	9.5	Α	usschnittsberechnung	93
	9.5	.1	Ausschnittsberechnung bei metallischen Werkstoffen	94
	9.5	.2	Ausschnittsberechnung bei thermoplastischen Werkstoffen	96
	9.5	.3	Das FEM-Modell	97
	9.5	.4	Ergebnisse der Berechnungen	98
	9.5	.5	Alternative Konstruktionsformen	101
1) В	eisp	oielhafte Auswertung der Festigkeitsanalyse für eine Tankkonstruktion	
	hi	nsi	chtlich der Nutzung für die Berechnungspraxis	106
1	1 Zu	ısa	mmenfassung und Ausblick	111
1:	2 Literaturverzeichnis 114			114

Abbildungsverzeichnis

Abbildung 2-1:	Einflussfaktoren auf den Schädigungsvorgang im Kunststoffap	pa-
	rate- und Rohrleitungsbau	5
Abbildung 3-1:	Schematische Darstellung eines Sphärolithen	8
Abbildung 4-1:	Modellvorstellung zum Crazing bei sphärolithischer Morphologie	11
Abbildung 4-2:	Scherbandbildung bei Thermoplasten	12
Abbildung 4-3:	Zeitstandfestigkeitsdiagramm für PE-HD	15
Abbildung 4-4:	Schädigungsvorgang durch Erweichen	17
Abbildung 4-5:	Ermittlung des Medieneinflusses auf das Zeitstandverhalten v Kunststoffen	vor 20
Abbildung 5-1:	Warmgasziehschweißen - Aufbau der Naht und schematisch Darstellung des Verfahrens	che 26
Abbildung 5-2:	Warmgasextrusionsschweißen - Aufbau der Naht und schematisch	che
	Darstellung des Verfahrens	29
Abbildung 5-3:	Heizelementstumpfschweißen - Schematische Darstellung des V fahrens	/er- 30
Abbildung 5-4:	Heizwendelmuffenschweißen - Schematische Darstellung des V fahrens	er- 31
Abbildung 5-5:	Temperaturverlauf beim Schweißen von Kunststoffen	32
Abbildung 5-6:	Fließrichtung beim Schweißen von Thermoplasten	33
Abbildung 5-7:	Bestimmung von Schweißfaktoren bei Kunststoffen	34
Abbildung 5-8:	Festigkeitsverhalten von Kehlnähten	36
Abbildung 5-9:	Schädigungsverhalten von Schweißnähten bei zweiachsig Spannungszuständen	gen 37
Abbildung 6-1:	Spannungs-Dehnungs-Verhalten metallischer Werkstoffe	45
Abbildung 6-2:	Spannungs-Dehnungs-Verhalten eines polymeren Werkstoffs	46
Abbildung 6-3:	Dehnungsverhalten bei konstanter Last (Retardation)	47
Abbildung 6-4:	Spannungsverhalten bei konstanter Dehnung (Relaxation)	48

Abbildung 6-5:	Isochrones Spannungs-Dehnungs-Diagramm für das Retardations- verhalten 49		
Abbildung 6-6:	Feder und Dämpfer zur mathematischen Beschreibung der Visko- elastizität 50		
Abbildung 6-7:	Bewertung von Biegespannungen bei metallischen Werkstoffen ubei Thermoplasten	nd 52	
Abbildung 6-8:	Kraft und Momentaufgabe bei den FE-Berechnungen	54	
Abbildung 6-9:	Grenzzustand bei gleichzeitiger Wirkung von Kraft und Moment	55	
Abbildung 6-10:	$\label{eq:schweisnaht} \mbox{Maximale Hauptspannung } \sigma_1 \mbox{ in der Schweißnaht in Abhängigk} \\ \mbox{von der Querkontraktionszahl}$	eit 56	
Abbildung 8-1:	Methoden zu Strukturspannungsermittlung: a) realer Verlauf an d Bauteiloberfläche, b) Extrapolation (Hot-Spot), c) Linearisieru mittels Pfadauswertung		
Abbildung 8-2:	Abweichungen von Biegespannung und Maximalspannung für ein beidseitig eingespannten Balken	en 73	
Abbildung 8-3:	Beispielhafte Darstellung von Singularitäten	74	
Abbildung 8-4:	Relevante Auswertepunkte zur Ermittlung der Beanspruchung einer geschweißten Kunststoffkonstruktion	en 79	
Abbildung 9-1:	Spannungserhöhungsfaktoren am Wanddickensprung, Auswertu	ng	
	für s_{M1} mit σ_N nach Gleichung (9-4), σ_m + σ_b	86	
Abbildung 9-2:	Konstruktion der Boden/Zylinder-Verbindung bei stehenden, rund Kunststofftanks	en 87	
Abbildung 9-3:	Verformung der Boden/Zylinderverbindung bei Flüssigkeitsfüllung	89	
Abbildung 9-4:	Spannungserhöhungsfaktoren für die Boden/Zylinderverbindun $\sigma_m + \sigma_b, \ H/D_M = 1, \ a = 0,7 \cdot s_B, \ Geometriee influss$	ng, 90	
Abbildung 9-5:	Spannungserhöhungsfaktoren für die Boden/Zylinderverbindun H/D _M = 1, σ_m + σ_b , Einfluss der Nahtgeometrie	ng, 91	
Abbildung 9-6:	Konstruktionsformen für Stutzeneinschweißungen		
Abbildung 9-7:	Definition der Flächen beim Flächenvergleichsverfahren		

Abbildung 9-8:	Spannungserhöhungsfaktoren für den durchgesteckten Stutzer
	nach Abbildung 9-6 a, $s_M/D_M = 0{,}002$, $D_S/D_M = 0{,}05$, $a = 0{,}7 \cdot s_S$, $\sigma_m + \sigma_b$
Abbildung 9-9:	Spannungserhöhungsfaktoren für den durchgesteckten Stutzer nach Abbildung 9-6 a, $s_M/D_M=0{,}002$, $a=0{,}7\cdot s_S,\sigma_m+\sigma_b$
Abbildung 9-10:	Vergleich der Schweißnahtbeanspruchungen für den durchgesteckten Stutzen nach Abbildung 9-6 a (100%) und b, $D_S/D_M=0.05$, a = 0.7 · s_S , σ_m + σ_b
Abbildung 9-11:	Alternative Konstruktionsformen für die Stutzen/Zylinderverbindung, a) durchgesteckter Stutzen, b) durchgesteckter Stutzen mit scheibenförmiger Verstärkung, c) wie b und zusätzlicher Kehlnahr an Schweißnahtwurzel
Abbildung 9-12:	Spannungserhöhungsfaktoren für den durchgesteckten, einseitig eingeschweißten Stutzen, σ_m + σ_b 103
Abbildung 9-13:	$Spannungserhöhungsfaktoren \ für \ den \ durchgesteckten, \ einseitig eingeschweißten \ Stutzen \ mit \ scheibenförmiger \ Verstärkung \ \sigma_m + \sigma_b \ 104$
Abbildung 9-14:	Spannungserhöhungsfaktoren für den durchgesteckten, einseitig eingeschweißten Stutzen mit scheibenförmiger Verstärkung und zusätzlicher Kehlnaht auf der Innenseite, $\sigma_m + \sigma_b$
Abbildung 10-1:	Methoden der FEM-gestützten Nachweisführung
Abbildung 10-2:	Beispiel eines Berechnungsblattes für die betriebliche Praxis 109

Tabellenverzeichnis

Tabelle 5-1:	Langzeit-Schweißfaktoren	39
Tabelle 6-1:	β_{M} und $\beta_{\text{M/F}}$ für Thermoplaste	54
Tabelle 7-1:	Grenzdehnungen $ \epsilon_{_{F\infty}} $ für Thermoplaste	61
Tabelle 7-2:	Kerbschlagzähigkeiten nach ISO 179 in KJ/m² für U-Kerbe und Kerbe (Werte in Klammern)	V- 63
Tabelle 9-1:	Zulässige Randfaserdehnungen ϵ_{Grenz} bei kaltverformten Zylind	er-
	schalen	84

Formelzeichen

Zeichen	Einheit	Bezeichnung
α	1	Spannungserhöhungsfaktor
α_{u}	1	Spannungserhöhungsfaktor für ungeschweißten Bereich
αfl	1	Spannungserhöhungsfaktor für in die Ebene senkrecht zur Schweißrichtung projizierte Hauptspannungen
α_{fth}	1	Spannungserhöhungsfaktor für Spannungen im thermisch geschädigten Bereich
α^{M}	1	Durch lineare Interpolation für Parameter ψ_i berechneter Spannungserhöhungsfaktor
α^{O}	1	Oberer Wert des Spannungserhöhungsfaktors für zwei beieinander liegende Parametersätze
$\alpha^{\sf U}$	1	Unterer Wert des Spannungserhöhungsfaktors für zwei beieinander liegende Parametersätze
β	1	Berechnungsbeiwert
β_{M}	1	Bewertungsfaktor für Biegespannungen
$\beta_{\text{M/F}}$	1	Bewertungsfaktor für kombinierte Biege- und Membranspannungen
3	1	Dehnung allgemein
ε _F	1	Dehnung bei Fliessbeginn von Metallen
ϵ_{pl}	1	Plastische Dehnung bei Metallen
ϵ_{irr}	1	Irreversible Dehnung bei Kunststoffen
$\boldsymbol{\epsilon}_{F^{\infty}}$	1	Dehngrenze bei unendlich langer Belastungszeit
€Grenz	1	Grenzdehnung für Kaltverformung
ϵ_{zul}	1	Zulässige Dehnung
η	Pa⋅s	Viskosität
φ	1	Berechnungsgröße
ν	1	Querkontraktionszahl
ρF	g/mm³	Dichte des Füllmediums
σ	MPa	Spannung allgemein
$\sigma_{11},\sigma_{22},\sigma_{33}$	MPa	Hauptspannungen
σ_1	MPa	Erste Hauptspannung
σ_{1_u}	MPa	Erste Hauptspannung im ungeschweißten Bereich
σ_{1_fl}	MPa	Maximalwert der in die Ebene senkrecht zur Schweißnahtrichtung projizierten Hauptspannungen
σ_{1_fth}	MPa	Erste Hauptspannung im thermisch geschädigten Bereich

σ_{ax}	MPa	Axialspannung
σ_{b}	MPa	Biegespannung
σ_{b_u}	MPa	Biegespannung im ungeschweißten Bereich
σ_{b_ref}	MPa	Biegespannung als Referenzlösung
σ_{calc}	MPa	Berechnungsgröße einer mechanischen Beanspruchung
σ_{D}	MPa	Druckspannung
σ_{m}	MPa	Membranspannung
$\sigma_{\text{m_u}}$	MPa	Membranspannung im ungeschweißten Bereich
σ_{N}	MPa	Nennspannung, Bezugsspannung
σ_{max}	MPa	Maximale Knotenspannung
$\sigma_x,\sigma_y,\sigma_z$	MPa	Spannung in x-, y-, z-Richtung
σ_{V}	MPa	Vergleichsspannung
σ_ϕ	MPa	Umfangsspannung
$\overline{\sigma}_\phi$	MPa	Gleichmäßig verteilte Umfangsspannung
$\sigma_{\phi m}$	MPa	Membranspannung in Umfangsrichtung
$\sigma_{\phi max}$	MPa	Maximale Spannung in Umfangsrichtung
σ_{zul}	MPa	Zulässige Spannung allgemein
σ_{zul_u}	MPa	Zulässige Spannung im ungeschweißten Bereich
σ_{zul_fl}	MPa	Zulässige Spannung für die Schweißnaht beim Nachweis gegen Bindefehler
σ_{zul_fth}	MPa	Zulässige Spannung im thermisch geschädigten Bereich
$\sigma_{zul_fl_red}$	MPa	Reduzierte zulässige Spannung der Schweißnaht
τ	MPa	Schubspannung allgemein
$\tau_{xy},~\tau_{yz},~\tau_{xz},$	MPa	Schubspannung richtungsbezogen
ψ_{i}	1	Parameter allgemein
ψ^{U}	1	Unterer Wert des Parameters, der durch eine Serienrechnung abgedeckt ist
ψ^{O}	1	Oberer Wert des Parameters, der durch eine Serienrechnung abgedeckt ist
ψ^{M}	1	Parameter der nicht durch eine Serienrechnung abgedeckt ist
Ψsn	۰	Winkel der Schweißnaht

Zeichen	Einheit	Bezeichnung
а	mm	Schweißnahtdicke
a _i	%	Anteil der Zeitdauer der Einzellast an der Gesamtstandzeit
a_{S}	mm	Abstand der Bodenplatte zur Mitte der Stutzenachse
Α	%	Bruchdehnung
A_{M}	1	Auslastung der zulässigen Werte für Membranspannungen
A_{M+B}	1	Auslastung der zulässigen Werte die Summe aus Membran- und Biegespannungen
A_p	mm²	Druckbeaufschlagte Fläche bei Ausschnitten
A_{σ}	mm²	Drucktragende Fläche für Ausschnitte
A_Sp	mm²	Spannungsquerschnitt
A_1	1	Abminderungsfaktor für die spezifische Zähigkeit
A _{2K}	1	Abminderungsfaktor für den Einfluss des Betriebsmediums auf die Zeitstandfestigkeit
b	mm	Mittragende Breite des Mantels
b_V	mm	Breite der scheibenförmigen Verstärkung
$D_M,D_{M1},D_{M2}mm$		Außendurchmesser des Mantels
Ds	mm	Außendurchmesser des Stutzens
е	mm	Wegkoordinate über der Wanddicke
E	MPa	Elastizitätsmodul
Ec	MPa	Kriechmodul
F	N	Kraft
F^{el}	N	Grenzkraft bei elastischer Rechnung
F [*]	N	Grenzkraft bei nichtlinearer Rechnung
f_{CRt}	1	Zeitbezogener Einflussfaktor des Mediums
$f_{\text{CR}\sigma}$	1	Spannungsbezogener Einflussfaktor des Mediums
f_{l}	1	Langzeit-Schweißfaktor
f_s	1	Kurzzeit-Schweißfaktor
f _{th}	1	Faktor für die thermische Schädigung durch den Schweißprozess
f_{SN}	mm	Überhöhung der Schweißnaht
g	m/s²	Erdbeschleunigung
Н	mm	Füllhöhe
h_b	mm	Höhe des Biegebalkens
h_2	mm	Höhe der unteren Schale
I	(MPa) ³	Invariante

j	1	Berechnungsgröße
K	MPa	Zeitstandfestigkeit für Betriebsmedium Wasser
K_{fl}	MPa	Zeitstandfestigkeit für geschweißte Probe
K _{fth}	MPa	Zeitstandfestigkeit nach thermischer Schädigung
K_{Medium}	MPa	Zeitstandfestigkeit für Betriebsmedium
K_{M}	MPa	Festigkeitskennwert für metallischen Werkstoff
KV	J	Kerbschlagarbeit
K_1, K_2, K_3	(MPa)²	Berechnungsgrößen einer orientierten mechanischen Beanspruchung
I _b	mm	Länge des Biegebalkens
Is	mm	Mittragende Breite des Stutzens
M	N⋅mm	Moment
M_b	N⋅mm	Biegemoment
M^{el}	N·mm	Grenzmoment bei elastischer Rechnung
M^{\star}	N⋅mm	Grenzmoment bei nichtlinearer Rechnung
p _F	MPa	Hydrostatischer Druck durch das Füllmedium
R_{e}	MPa	Streckgrenze
R_{m}	MPa	Zugfestigkeit
$R_{p0,2}$	MPa	0,2%-Dehngrenze
S	1	Sicherheitsfaktor
S_0	MPa	Berechnungsgröße einer mechanischen Beanspruchung
S_x , S_y , S_z	MPa	Berechnungsgrößen einer orientierten mechanischen Beanspruchung
S_{F}	1	Sicherheitsfaktor für Dehngrenze
S _B	mm	Wanddicke des Bodens
s_M , s_{M1} , s_{M2}	mm	Wanddicken des Mantels
SS	mm	Wanddicke des Stutzens
s_V	mm	Wanddicke der scheibenförmigen Verstärkung
t	h, a	Beanspruchungszeit
t_{H}	min	Wärmeeinwirkungszeit (Kontaktzeit)
t_i	h	Einwirkdauer der Einzellast
t_{iB}	h	Bruchzeit bei Einwirkung der Einzellast
t_{l}	h	Beanspruchungszeit im Langzeitbereich
t_{Medium}	h	Beanspruchungszeit bei Einwirkung von Betriebsmedium
t_{Wasser}	h	Beanspruchungszeit bei Betriebsmedium Wasser
t_{x}	h	Berechnete Gesamtstandzeit

T	°C	Betriebstemperatur
T _e	°C	Erweichungstemperatur
T_G	°C	Glasübergangstemperatur
T_H	°C	Heizelementtemperatur
T_m	°C	Kristallitschmelztemperatur
U	V	Elektrische Spannung
ü	mm	Überstand am Boden
v_A	1	Verschwächungsbeiwert eines Ausschnitts
W_b	mm³	Widerstandsmoment gegen Biegung
X_1, X_2, X_3	(MPa)²	Berechnungsgrößen einer orientierten mechanischen Beanspruchung
Y_1, Y_2, Y_3	(MPa)²	Berechnungsgrößen einer orientierten mechanischen Beanspruchung
Z_1, Z_2, Z_3	(MPa)²	Berechnungsgrößen einer orientierten mechanischen Beanspruchung
α-PP	1	α -Kristallform des PP
β-ΡΡ	1	β-Kristallform des PP
FNCT	1	Full Notch Creep Test
GfK	1	Glasfaserverstärkter Kunststoff
i-PP	1	Isotaktisches Polypropylen
MFR	g/min	Schmelzrate (Melt-Flow-Rate)
Nu	1	Nachweis für ungeschweißten Bereich
Nfl	1	Nachweis gegen Bindefehler der Schweißnaht
Nfth	1	Nachweis für thermisch geschädigten Bereich
OIT	min	Oxidationsinduktionszeit
PE	1	Polyethylen
PE-LD	/	Polyethylen niedriger Dichte
PE-HD	/	Polyethylen hoher Dichte
PP	/	Polypropylen
PP-B	/	Polypropylen Blockcopolymerisat
PP-H	/	Polypropylen Homopolymerisat
PP-R	/	Polypropylen Random Copolymerisat
PVC	/	Polyvinylchlorid
PVC-NI	1	Polyvinylchlorid normal schlagzäh