Schriftenreihe des International Universities Research Institute und des Wrangell-Instituts für Umweltgerechte Produktionsautomatisierung

Band 1

B. Bitzer, R. Biernatzki

Product Service Engineering Limitations & Future Needs for SMES

INNOPSE is funded by the European Community under the 'Competitive and Sustainable Growth' Programme

The author is solely responsible for this work.

GTC1 - 2001 - 43057

Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

Copyright Shaker Verlag 2004 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2449-1 ISSN 1613-3609

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail:info@shaker.de

Preface

Vor Ihnen liegt der erste Band einer neuen gemeinsamen Schriftenreihe des International Universities Research Institute (IURI) und des Wrangell-Instituts für Umweltgerechte Produktionsautomatisierung (WIUP). Das WIUP ist ein Aninstitut der Hochschulabteilung Soest und Mitglied der Magarethe von Wrangell Stiftung e.V.

Das IURI wurde als gemeinsamens Forschungsinstitut der Ingenieurfachbereiche in Soest gegründet und führt im Rahmen des Joint PhD Programms mit der britischen Partnerhochschule Bolten Institute internationale Promotionsvorhaben durch. Darüber hinaus sind im IURI internationale Gastprofessoren tätig, die neben Lehrveranstaltungen und Workshops gerade auch internationale Forschungsprojekte initiieren.

Der vorliegende Band enthält einen Zwischenbericht zum europäischen Forschungsprojekt INNOPSE – Innovation Studio and Exemplary Development of Product Service Engineering.

Dienstleistungen gewinnen auch gerade im Industriebereich zunehmend an Bedeutung. Der Band fasst deshalb Fallstudien zum Innovationsmanagement in europäischen Unternehmen zusammen.

Neben dem Forschungsteam von IURI und WIUP in Soest sind die Universität Leeds, die Unternehmen bsw in Chemnitz, Otrek in Wroclaw, Oktav in Esztergom, ST Microelectronics in Catania, Innospexion in Hvalsoe und das TEIC auf Kreta beteiligt.

Die erforderliche Durchführung der Studien und dieses Berichts war nur mit Unterstützung aller beteiligten Projektpartner und den Mitarbeitern möglich. Insbesondere dem Soester INNOPSE-Team mit Projektmanager Ralf Biernatzki und dem Projektmitarbeiter René Schmitz sowie Sanja Dogramadzi von der University of Leeds sei herzlich gedankt.

Soest, im Dezember 2003

Berthold Bitzer

Table of Content

Preface

Not	tation and Abbreviation IndexN	/
Lis	t of Figures and Tables	/
Par	rticipating PartnersV	I
1	INTRODUCTION	1
1.1	The INNOPSE project and its core objectives	1
1.2	Major milestones of the INNOPSE research carried out	2
1.3	The structure of the book	4
2	PRODUCT SERVICE ENGINEERING LIMITATIONS AND FUTURE NEEDS FOR SMES	6
2.1	Aims of the study	6
2.2	Survey methodology 2.1 Experience from the interviews	6 7
2.3	Selection of organisations to interview	7
2.4		8
	.4.1 Company size	
	.4.2 Business nature	
2	.4.4 Patent registrations 1	0
2.5	Relevance for Service Engineering1	0
3	KEY FINDINGS OF THE STUDY 1	3
4	DETAILED ANALYSIS 1	5
	Innovation Management in technology oriented companies. 1 .1.1 Expectations and motivation for Innovation Management	5 5

4	 4.1.1.3 The need for flexibility	20 21 25 26 26 30 32 33
	4.1.4.2 Implementation of other QC processes 4.1.4.3 Use of QA in different sectors	34
	4.1.4.4 Error-finding methodologies 4.1.4.5 Error-handling methodologies	
	4.1.4.5 Error-handling methodologies	
		57
	Human resources in innovation management	
	2.1 Team-oriented work	
	.2.2 Improvement in the workplace environment	
	.2.3 Further education	
4	2.4 Individual motivation	42
4.3	Methods and tools for innovation management	44
	.3.1 Creativity techniques	
	.3.2 Analysis and evaluation of ideas in innovation management	47
4		
4	4.3.2.1 Standard methods for ideas evaluation	47
	4.3.2.1 Standard methods for ideas evaluation4.3.2.2 Software for idea analysis	47 49
	4.3.2.1 Standard methods for ideas evaluation	47 49
4	4.3.2.1 Standard methods for ideas evaluation 4.3.2.2 Software for idea analysis .3.3 Knowledge management	47 49 50
4 4.4	 4.3.2.1 Standard methods for ideas evaluation 4.3.2.2 Software for idea analysis 3.3 Knowledge management Deficits and needs for SMEs 	47 49 50 52
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57 59
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57 59 60
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57 59 60
4 4.4 4	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57 59 60 63 66
4 4.4 4 5	 4.3.2.1 Standard methods for ideas evaluation	47 49 50 52 53 57 57 59 60 63 66 .X

8.	APPENDIX	XIV
	Appendix A: Overview of creativity techniques	XIV
	Appendix B: INNOPSE questionnaire	XV
	Appendix C: Best practice example (Prof. Papazoglou)	XXXIII
	Appendix D: Some books on innovation	XLVII

Notation and Abbreviation Index

bsw	=	Bildungswerk der Sächsischen Wirtschaft e.V.
CAI	=	Computer Aided Innovation
CEO	=	Chief Executive Officer
CS	=	Cross Sectional
EFQM	=	European Foundation for Quality Management
EU	=	European Union
FMEA	=	Failure Modes and Effects Analysis
IEC	=	International Electrotechnical Commission
IM	=	Innovation Management
INNOPSE	=	Innovation Studio and Exemplary Developments for Product
		Service Engineering
ISO	=	International Organization for Standardization
IT	=	Information Technology
KPI	=	Key Product Indicators
PSS	=	Product Service System
QA	=	Quality Assurance
QC	=	Quality Control
R&D	=	Research and Development
SME(s)	=	Small and Medium sized Enterprise(s)
SP	=	Service Product
SWOT	=	Strength-Weakness / Opportunities-Threats
TEIC	=	Technological Educational Institute Crete
TQM	=	Total Quality Management
UNIFAT	=	University of Applied Sciences, Division Soest
UoL	=	University of Leeds
USP	=	Unique Selling (Pro-) Position
WIUP	=	Wrangell - Institut für umweltgerechte Produktionsautomatisie-
		rung

List of Figures and Tables

Figure 2.1:	Company size	8
Figure 2.2:	Business nature	9
Figure 2.3:	European countries involved	9
Figure 2.4:	Patent registrations	10
Figure 2.5:	Companies that offer services	10
Figure 2.6:	Service offered in different sizes of surveyed companies	11
Figure 2.7:	Companies in different sectors that offer services	11
Figure 2.8:	Importance of IM for developing services	12
Figure 4.1:	Expectations and motivations for innovation management	15
Figure 4.2:	Implementation of ideas	23
Figure 4.3:	General structure of the innovation chain	25
Figure 4.4:	Companies with institutionalised IM	28
Figure 4.5:	The customer focus of the surveyed companies	30
Figure 4.6:	Comparison of QA implementation between companies of	
	different size	33
Figure 4.7:	Comparison of QA implementation between different sectors	34
Figure 4.8:	Error handling in different size of companies	36
Figure 4.9:	Measures taken by the companies to encourage IM with respect to	
	human resources	38
Figure 4.10:	Deployment of training programmes to enhance IM dependent on	
	the company size	41
Figure 4.11:	Kind of employee incentives and their usage with respect to the	
	company size	43
Figure 4.12:	Creativity techniques, known by the companies	44
Figure 4.13:	Successfully used creativity techniques from companies	
	which know the techniques	45
Figure 4.14:	Usage of software as support for innovation development,	
	depending on the companies' size	46
Figure 4.15:	How well are methods and tools used in ideas analysis in	
	different-size companies	48
Figure 4.16:	Companies that are not familiar with methods and tools for	
	idea evaluation	48

Figure 4.17:	Percentage of companies that use software for idea analysis	49
Figure 4.18:	Use of software for ideas analysis in different sectors	49
Figure 4.19:	Usage of software as support for knowledge management,	
	depending on the companies' size	50
Figure 4.20:	Companies necessity to utilise software for knowledge	
	management	51
Figure 4.21:	Importance of the intranet as a medium of communication	51
Figure 4.22:	Deficits for future IM in SMEs (multiple choices possible)	53
Figure 4.23:	Relevance of financial potential as a major deficit for IM in SMEs $_$	54
Figure 4.24:	Contact/ Knowledge transfer	56
Figure 4.25:	Involvement of management consultants	64
Table 4.1:	Internal handicaps in the phase of the innovation process	55
Table 4.2:	Measures to encourage individual and team creativity	62

Participating Partners

The Innovation Studio and Exemplary Developments for Product Service Engineering (hereafter INNOPSE) consortium embraces partners from a wide spectrum, including a research group from four universities and research institutions and five industrial partners from Germany, the UK, Poland, Hungary, Greece, Italy and Denmark with the University Division Soest as the co-ordinator. This section briefly introduces each partner who contributed to the realisation of the book at hand.

All these partners of the INNOPSE consortium carried out the requisite case and feasibility studies in their countries. The partners were advised to consider companies from their own country, but also from the European neighbourhood. The results of these empirical cross-border investigations build the mainstay of this book, and are presented in a structured and methodological way.

The *University of Applied Sciences, Division Soest (UNIFAT)* carried out the project management of the whole cluster. It has research and consultancy experiences in energy technology (i.e., energy management systems, load forecasting), in intelligent systems (i.e., neural networks, agent technology, wavelets), in software engineering for automation tasks (i.e., process automatisation with real-time expert systems), and technology transfers to SMEs (i.e., organisation of workshops on innovation management). With respect to the contribution to this book, UNIFAT was active in the development and updates of the questionnaire. Additionally, a server and data base for an online version were installed. UNIFAT contacted more than 200 companies in Germany and conducted case studies on 29 companies. UNIFAT took a major part in the analysis and evaluation of the questionnaire.

The *Wrangell–Institut für Umweltgerechte Produktionsautomatisierung (WIUP)* is a research institute at UNIFAT. It was established in 2000 by three professors from three different faculties of the university. Its research focus covers multiple areas of production automatisation, especially with emphasis on sustainability. Its core competencies lie in the application of new technologies to minimise the impact of production onto the environment, the development of demonstrators to show turn key solutions, the establishment of close cooperation with SMEs, and the crafting of solutions according to the latter's needs. WIUP actively supported the development of the questionnaire, contacted about 100 companies in Germany, carried out 25 case stud-

ies on these enterprises, and contributed to the analysis and evaluation of the results.

The focus of the INNOPSE partner *University of Leeds (UoL)* is on mechanical engineering research in areas of automotive, vehicle dynamics, biomedical engineering, control and mechanotrics, intelligent systems, combustion and engines, Computer aided engineering, fluid mechanics, tribology and robotics. UoL has been involved in many R&D projects in the UK and in the EU. The university contacted about 250 companies for the research project at hand. 25 companies in the UK and 5 in Italy have been thoroughly investigated during the research programme. Additionally, UoL has actively participated in statistical processing of the questionnaire data. Segmentations have been made in respect to the company size, sector and innovation management implementation.

The **Technological Educational Institute Crete (TEIC)** has its core research activities in electrical energy technologies, especially in efficiency optimization techniques, load forecasting, energy management systems, visualisation and control. Additionally the institute is active in research on intelligent systems, energy management operator training, and technology transfers to SME's. Its major contributions to the INNOPSE research programme were crucial inputs to the development and update of the questionnaire. TEIC contacted about 100 companies, and case studies and subsequent analysis were conducted on 20 leading innovation companies in Greece.

The *Bildungswerk der Sächsischen Wirtschaft e.V. (bsw)* was founded in 1990 as a non-profit organisation. It comprises 28 enterprises, 15 employers' associates, and sector organisations. Its main target is the contribution to the structural transition of the Saxon economy. bsw has been involved in manifold EU-funded projects, among others in GROWTH, Leonardo da Vinci, Equal, Adapt and others. Bsw took an active part in the realisation of this book. It helped drafting the questionnaire, conducted case studies on 40 German companies, supported the Polish and Hungarian partners, and participated in the analysis and evaluation of the research results.

The Hungarian INNOPSE Partner **OKTÁV Inc.** is a training institute specialized on training courses on industry, management, economics, human resources, informat-

VIII

ics, and medical and social professions participated. Furthermore it runs secondary school education programmes. OKTAV has participated in three previous EU projects on financial aid programmes (i.e., Leonardi da Vinci, Bechabek 2HU, and SZAKI). Its main contributions to the this book have been the efforts of translating the questionnaire and further documents for data collection in Hungary, the undertaking of case studies on 15 companies, and the search for more partners (25).

The Polish INNOPSE partner **OTREK** was founded in 1984. It is a management training centre that has its main activities in training, advisory services, conferences, and international projects. Its participation in international projects include support programmes for SMEs (PHARE), training projects for entrepreneurs (British Knowhow Fund Programme for Poland), training for local health politicians in the field of health care management (the World Bank), and assistance to the development of local employment pacts (PHARE 2000). OTREK contacted around 40 companies in Poland and delivered 24 complete questionnaires to the INNOPSE project.

INNOSPEXION is a Danish service provider, manufacturer and developer of inspection technology. INNOSPEXION provides services directed towards, e.g., new materials, novel combinations of materials, and technology screening prior to integration to a production line. Additionally, it manufactures and sells non-destructive inspection systems and parts thereof, based on X-rays, thermography, and laser interferometry imaging. INNOSPEXION contributed to the INNOPSE project by approaching approximately 100 companies, from which 30 have been selected for in-depth analysis.

The French-Italian INNOPSE partner *STMicroelectronics* is a global, independent and leading semiconductor company that designs, develops, and manufactures and markets a broad range of semiconductors integrated circuits and discrete devises used in a wide variety of microelectronic applications, including telecommunication systems, computer systems, consumer products, automotive products, and industrial automation and control systems. The company contributed 12 filled-in questionnaires to the INNOPSE research programme.