$A^{III}B^V$ -Mischkristallbildung mit Stickstoff und Bor

DISSERTATION

zur Erlangung des akademischen Grades Doctor rerum naturalium

der Fakultät für Physik und Geowissenschaften der Universität Leipzig

von Diplom-Physiker Gunnar Leibiger

geboren am 13.01.1973 in Annaberg-Buchholz

angefertigt an der Fakultät für Chemie und Mineralogie der

Universität Leipzig

betreut von Dr. Volker Gottschalch, Universität Leipzig

Tag der Einreichung:13.06.2003Tag der Beschlussfassung:12.01.2004

- 1. Gutachter: Prof. Dr. Marius Grundmann, Universität Leipzig
- 2. Gutachter: Prof. Dr. Bernd Rheinländer, Universität Leipzig
- 3. Gutachter: Prof. Dr. Werner Seifert, Lund University

Berichte aus der Physik

Gunnar Leibiger

A[™]B^v-Mischkristallbildung mit Stickstoff und Bor

> Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

Zugl.: Leipzig, Univ., Diss., 2003

Copyright Shaker Verlag 2004 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2642-7 ISSN 0945-0963

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail:info@shaker.de

Bibliographische Beschreibung

Leibiger, Gunnar

"A^{III}B^V-Mischkristallbildung mit Stickstoff und Bor"

Universität Leipzig, Dissertation

123 S., 363 Lit., 77 Abb., 16 Tab.

Referat:

Die vorliegende Arbeit beschäftigt sich mit dem Einbau von Stickstoff und Bor in klassische III-V-Halbleiter wie GaAs, $In_xGa_{1-x}As$ und GaP mittels metallorganischer Gasphasen-Epitaxie (MOVPE). Die entsprechenden Kompositionsbereiche von Stickstoff und Bor reichen von 0 bis maximal ~4%. Bei den Stickstoff- und Bor-haltigen Mischkristallen handelt es sich ausnahmslos um einkristalline, in der Zinkblende-Struktur vorliegende Materialien.

Zur Untersuchung des MOVPE-Wachstums von $In_xGa_{1-x}N_yAs_{1-y}$ wurden wichtige Wachstumsparameter variiert und deren Einfluss auf die strukturellen und optischen Eigenschaften der Schichten im Wesentlichen mit Hilfe von Photolumineszenz-, Ellipsometrieund hochauflösenden Röntgenbeugungsuntersuchungen analysiert. Der im Hinblick auf Bauelementanwendungen wichtige Dotierstoffeinbau wurde mit Disilan und Diethylzink als Quellen für die *n*- bzw. *p*-Dotierung studiert. Die Analyse der Eigenschaften der freien Ladungsträger (Konzentration, Beweglichkeit und effektive Masse) der $In_xGa_{1-x}N_yAs_{1-y}$ und $B_xGa_{1-x-z}In_zAs-Schichten erfolgte mittels Hall-Messungen und Infrarot-Ellipsometrie. Der Einfluss von Wasserstoff auf die elektronischen Eigenschaften von <math>In_xGa_{1-x}N_yAs_{1-y}$ wurde mittels einer gezielten H-Implantation untersucht.

Der Einfluss von Stickstoff und Bor auf die Bandstruktur von $Ga_{1-x}N_yAs_{1-y}$,

 $Ga_{1-x}N_yP_{1-y}$, $In_xGa_{1-x}N_yAs_{1-y}$ bzw. $B_xGa_{1-x}As$ wird im Wesentlichen mit Hilfe von spektroskopischer Ellipsometrie diskutiert. Dabei werden durch die Anpassung parameterisierter dielektrischer Funktionen mittels einer Regressionsanalyse unter anderem Energien und Verbreiterungen von direkten Interband-Übergängen gewonnen. Flankierend werden Photolumineszenz- und Transmissionsmessungen vorgestellt.

Die phononischen Eigenschaften der untersuchten Schichten werden hauptsächlich mittels Infrarot-Ellipsometrie sowie ergänzend mittels Raman-Messungen untersucht. Aus der Analyse der infrarot-dielektrischen Funktion sowie der Raman-Spektren wird das Modenverhalten der optischen Phononen der untersuchten Materialien bestimmt. Es wird ein Verfahren zur Bestimmung der Stickstoff- und Indium-Konzentrationen in $\ln_x Ga_{1-x}N_y As_{1-y}$ -Schichten vorgestellt, welches auf der Kombination von Ergebnissen aus Infrarot-Ellipsometrie- und hochauflösenden Röntgenbeugungsuntersuchungen basiert. Auf Unterschiede zwischen dem Einbau von Bor und Stickstoff in ein GaAs-Wirtsgitter hinsichtlich der phononischen und elektronischen Eigenschaften wird gesondert eingegangen.

Die Anwendung von ${\rm In}_x{\rm Ga}_{1-x}{\rm N}_y{\rm As}_{1-y}$ und ${\rm B}_x{\rm Ga}_{1-x-z}{\rm In}_z{\rm As}$ als aktives Material in Laserdioden wird demonstriert.

Inhaltsverzeichnis

1	Ein	leitung	5	1			
2	Ausgewählte Eigenschaften der untersuchten III-V-Halbleiter						
	2.1	Ionizit	äten	6			
	2.2	Mischl	kristallsysteme	7			
		2.2.1	Metastabile Mischkristalle	7			
		2.2.2	Epitaxie und Spannungen	9			
	2.3	Krista	llstruktur	11			
	2.4	Kritise	che Punkte	12			
		2.4.1	Allgemeines	12			
		2.4.2	Kritische Punkte in ternären Verbindungen	13			
	2.5	Phono	nen	17			
		2.5.1	Allgemeines	17			
		2.5.2	Phononen in ternären Verbindungen	18			
	2.6	Einflu	ss biaxialer Spannung auf Interband-				
		Überg	änge und Phononenmoden	19			
		2.6.1	Interband-Übergänge	20			
		2.6.2	Phononenmoden	21			
3	Experimentelle Methoden 2						
	3.1	Metall	organische Gasphasen-Epitaxie				
		(MOV	PE)	22			
		3.1.1	Der Züchtungsprozess	22			
		3.1.2	MOVPE-Anlage	24			
		3.1.3	Ausgangsmaterialien und Züchtungsparameter	25			
	3.2	Hocha	uflösende Röntgenbeugung	26			
		3.2.1	Allgemeines	26			
		3.2.2	Bestimmung der chemischen Zusammensetzung	26			
	3.3	Ellipso	ometrie	27			
		3.3.1	Grundlagen	27			
		3.3.2	Datenanalyse	29			
		3.3.3	Modell-dielektrische Funktion im nahen Infrarot bis Vakuum-				
			Ultraviolett	30			
		3.3.4	Modell-dielektrische Funktion im mittleren und fernen Infrarot	32			
		3.3.5	Experimentelle Details	33			
	3.4	Photo	lumineszenz	34			
	3.5	Rama	n-Streuung	36			
	3.6	Hall-E	lffekt	37			

	3.7	Aufbau und Charakterisierung von				
		Laserdioden	38			
		3.7.1 Aufbau von Laserdioden	39			
		3.7.2 Laserkennlinien und Literaturstand	40			
4	MO	$\textbf{MOVPE-Wachstum von In}_{x}\textbf{Ga}_{1-x}\textbf{N}_{y}\textbf{As}_{1-y}$				
	4.1	Experiment, Datenanalyse, Bestimmung von x und y	42			
	4.2	Ergebnisse und Diskussion	44			
		4.2.1 MOVPE-Wachstum	44			
		4.2.2 Wasserstoff-Implantation	52			
		4.2.3 Thermische Nachbehandlung	55			
	4.3	Zusammenfassung	58			
5	Dot	ierung von $In_{\tau}Ga_{1-\tau}N_{\nu}As_{1-\nu}$ und $B_{\tau}Ga_{1-\tau-\tau}In_{\tau}As$	59			
	5.1	Experiment und Datenanalyse	59			
	5.2	Charakterisierung der Dotierstoffquellen	59			
	5.3	Ergebnisse und Diskussion	60			
		5.3.1 Si-Dotierung	60			
		5.3.2 Zn-Dotierung	65			
	5.4	Zusammenfassung	67			
	0.1	Zasamienassang	0.			
6	Die	lektrische Funktion, Interband-Übergänge und Phononenmo-				
	den	in GaN_yAs_{1-y} und $B_xGa_{1-x}As$	68			
	6.1	Experiment und Datenanalyse	69			
	6.2	Ergebnisse und Diskussion	69			
		6.2.1 Photolumineszenz	69			
		6.2.2 NIR-VUV Dielektrische Funktion	70			
		6.2.3 Interband-Übergänge	75			
		6.2.4 Phononenmoden	81			
		6.2.5 Ionizitäten und Bowing-Parameter	87			
	6.3	Zusammenfassung	89			
7	Interhand Übergönge Dhenenenmeden Luminessens und There-					
'	mis	sion in GaN ₂ P ₁	91			
	7.1	Experiment und Datenanalyse	91			
	7.2	Ergebnisse und Diskussion	92			
		7.2.1 Photolumineszenz und Transmission	92			
		7.2.2 Interhand-Übergänge	03			
		7.2.2 Phononenmoden	00			
	73	Zusammenfassung	101			
	1.0		101			
8	Die	lektrische Funktion, Bandlücken-Energien, Phononenmoden und	1			
	Kor	nposition in $\ln_x \text{Ga}_{1-x} \text{N}_y \text{As}_{1-y}$	102			
	8.1	Experiment und Datenanalyse	103			
	8.2	Ergebnisse und Diskussion	103			
		8.2.1 NIR Dielektrische Funktion	103			
		8.2.2 Phononenmoden	105			
		8.2.3 Phononen in kompressiv und tensil verspannten				
		$(InAs)/GaN_yAs_{1-y}/GaAs$ Ubergittern	107			

		8.2.4 Komposition	108					
	8.3	Zusammenfassung	. 110					
9	9 $In_rGa_{1-r}N_rAs_{1-r}$ - und $B_rGa_{1-r-r}In_rAs$ -Laserdioden							
	9.1	Proben und Experiment	111					
	9.2	Ergebnisse und Diskussion	. 112					
	9.3	Zusammenfassung	114					
10 Zusammenfassung und Ausblick								
Literaturverzeichnis								
Verzeichnis wichtiger Abkürzungen und Symbole								
Verzeichnis eigener Publikationen								
Danksagung								