Induktiv beschleunigte Klebungen in der Serienfertigung

Von der Gemeinsamen Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines

Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation

von: Sascha Nagel aus: Dannenberg

eingereicht am: 15.10.2003 mündliche Prüfung am: 09.12.2003

Referenten: Prof. Dr.-Ing. Klaus Dilger, Prof. Dr.-Ing. Helmut Wohlfahrt,

Prof. Dr.-Ing. Thomas Reiner

Vorsitzender: Prof. Dr.-Ing. Ferrit Kücükay

2004

bonding and joining

Band 3

Sascha Nagel

Induktiv beschleunigte Klebungen in der Serienfertigung

Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2003

Copyright Shaker Verlag 2004 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-3270-2 ISSN 1617-8890

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail:info@shaker.de

DANKSAGUNG

An dieser Stelle möchte ich allen danken, die mir die Vollendung meiner Promotion ermöglichten:

Meinem Doktorvater Herrn Prof. Dr.-Ing. Klaus Dilger danke ich für die Möglichkeit, meine Promotion anfertigen zu dürfen und für seine hervorragende fachliche Unterstützung und Anregungen.

Herrn Prof. Dr.-Ing. Ferrit Kücükay danke ich für die Übernahme des Prüfungsausschuß. Ebenso gilt mein Dank den Referenten Herrn Prof. Dr.-Ing. Helmut Wohlfart und Herrn Prof. Dr.-Ing. Thomas Reiner.

Den Geschäftsführen der IFF GmbH, Herrn Dr.-Ing. Christian Lammel und Herrn Prof. Dr. Karel Mazac danke ich für die großzügige Bereitstellung der Anlagen und Prüfmittel, die für das Anfertigen dieser Promotion notwendig waren, sowie ihre fruchtbare thematische und persönliche Unterstützung.

Den Mitarbeitern der IFF GmbH, Dr.-Ing Peter Dörfler, Dipl.-Ing. Florian Dirscherl, Dipl.-Ing. Farid Gohary, Dipl.-Ing. Ralf Schuster, Dipl.-Ing. Hans Hollinger und Martina Gürtner, sowie meinen Semestranten und Diplomanten danke ich für Unterstützung und das hervorragende und motivierende Arbeitsklima.

Ganz besonders danke ich natürlich meinen Eltern Regina und Antonius Nagel, die mir das Studium erst ermöglichten und mich jederzeit unterstützen und meiner Freundin Waltraud Felsl, die mich immer motivierte und hilfreich zur Seite stand.

Inhaltsverzeichnis 5

INHALTSVERZEICHNIS

Ve	rwendet	ete Formelzeichen und Abkürzungen	7			
1	Einleit	Einleitung				
	1.1	Induktive Klebstoffaushärtung in der Serienfertigung	9			
	1.2	Zielsetzung und Vorgehensweise	10			
2	Herste	ellung von strukturellen Verbindungen durch das Fügeverfahren	Kleben.11			
3	Stand der Erkenntnisse					
	3.1	Klebstoffe	15			
	3.2	Arten von Klebungen	16			
	3.3	Wärmeleitung von Klebungen	18			
	3.4	Bauteilverzug	19			
	3.5	Thermische Klebstoffhärtung	21			
	3.5	5.1 Anforderungen in der Serienfertigung	21			
	3.5	5.2 Verfahren zur Wärmeeinbringung	24			
	3.5	5.3 Vergleich	29			
	3.6	Grundlagen der induktiven Erwärmung	30			
	3.6	6.1 Wirkprinzip	30			
	3.6	6.2 Thermischer Wirkungsgrad	34			
	3.7	Induktionserwärmung in technischen Anwendungen	41			
	3.7	7.1 Technische Heizprozesse	41			
	3.7	7.2 Kleben	42			
4	Aufgabenstellung45					
5	Versuchseinrichtungen47					
	5.1 Anlagentechnik		47			
	5.2	Messtechnik	48			
	5.2	2.1 Temperaturmessung	48			
	5.2	2.2 Deformationsmessung	52			
6	Ermittlung der Reaktionswärme in der Klebverbindung57					
	6.1 Einflussfaktoren auf den Vernetzungsgrad					
	6.2	Reaktionswärme in der Klebschicht	60			

6 Inhaltsverzeichnis

7	Ermittlung der Einflussfaktoren auf den Bauteilverzug an Versuchskörpern				
7.1 Prozessparameter					
	7.1.1	Zieltemperatur	71		
	7.1.2	Temperaturgradient	78		
	7.2 K	Construktion	83		
	7.2.1	Bauteilsteifigkeit	83		
	7.2.2	Position des Aufheizbereichs	86		
	7.3 N	Materialkennwerte	88		
	7.4 N	Methoden zur Minimierung des Bauteilverzugs	95		
8	Anpassung der Anlagentechnik unter wirtschaftlichen Gesichtspunkten10				
	8.1 A	nlagenminimierung	102		
	8.2 Ir	nduktoren für kleine Bauteile	103		
	8.3 Ir	nduktorflexibilisierung	105		
9	Umsetzung am Originalbauteil10				
	9.1 A	ushärtung der Bördelnahtklebung am Beispiel einer Aluminiumfront-			
	klappe				
	9.1.1	Beschreibung des Bauteils	109		
	9.1.2	Umsetzung der Induktionstechnik gemäß den Versuchsergebnissen	am		
		Probenkörper	116		
	9.1.3	Bewertung der Verformungen	132		
	9.2 A	ushärtung der Unterfütterungsklebung am Beispiel einer Stahl-			
	S	Seitenwand	133		
	9.3 A	ushärtung von Befestigungselementen am Beispiel von Spiegelsocke	l und		
	G	Gewindebolzen	146		
10	Zusamm	enfassung	155		
11	Literatur	verzeichnis	159		
12	Abbildungsverzeichnis				

VERWENDETE FORMELZEICHEN UND ABKÜRZUNGEN

Größe	Einheit	Erklärung
λ	W/mK	Wärmeleitfähigkeit
α	10 ⁻⁶ /K	Längendehnungskoeffizient
γ	1/K	Volumendehnungskoeffizient
V_0	m³	Ausgangsvolumen
T_0	°C	Ausgangstemperatur
tan δ	-	Dielektrischer Verlustfaktor
ε_r	-	Dielektrische Verlustzahl
μ_0	1,256*10 ⁻⁶	Permeabilitätskonstante, absolute,
	Vs/Am	
μ_r	-; -	Permeabilität, relative; Dipolmoment
Q	J	Wärmemenge
Q	W	Wärmestrom
ġ	W / m²	Wärmestromdichte
1	Α	Stromstärke
R	Ω; -	Ohmscher Widerstand; Reaktionsgeschwindigkeit
t	S	Zeit
f	Hz	Frequenz
δ	mm; mm	Stromeindringtiefe; Klebschichtdicke
5	$\Omega~\text{mm}^2/\text{m}$	Spezifischer elektrischer Widerstand
В	Т	Induktion
Н	A/m	Magnetische Feldstärke
P	W / m	Leistungsübertragungskonstante
r	m	Radius, bzw. Abstand zum Leiter
F	-	Leistungsübertragungskonstante
ρ	kg / m³	Dichte

N - Windungszahl

L mm Länge

 σ N/mm² Spannung

E kN / mm² Elastizitätsmodul

 ε -; - Dehnung; Emissionszahl

β K-1 Kubischer Dehnungskoeffizient

Abkürzung Erklärung

EP Epoxidharz

FT Fügeteil

HF Hochfrequenz

IR Infrarot

IGBT Insulated Bipolar Transistor

KTL Kathodische Tauchlackierung

MF Mittelfrequenz

PUR Polyurethan

PWM Pulsweitenmodulation

c Spezifische Wärmekapazität

WLP Wärmeleitpaste