Numerische und experimentelle Untersuchungen an Klebverbindungen mit gradierter Klebschicht

Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.- Ing.)

im Fachbereich Maschinenbau der

Universität Kassel

vorgelegt von

Dipl.-Ing. Clemens Barthel

aus Melsungen

Melsungen, den 08.09.2006

Erster Gutachter: Prof. Dr.-Ing. M. Schlimmer

Zweiter Gutachter: Prof. Dr.-Ing. A. Matzenmiller

Schriftenreihe des Instituts für Werkstofftechnik Kassel

Clemens Barthel

Numerische und experimentelle Untersuchungen an Klebverbindungen mit gradierter Klebschicht

D 34 (Diss. Univ. Kassel)

Shaker Verlag Aachen 2007

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kassel, Univ., Diss., 2007

Die vorliegende Arbeit wurde vom Fachbereich Maschinenbau der Universität Kassel als Kasseler Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) angenommen.

Erster Gutachter: Prof. Dr.-Ing. M. Schlimmer Zweiter Gutachter: Prof. Dr.-Ing. A. Matzenmiller

Tag der mündlichen Prüfung: 29.01.2007

Copyright Shaker Verlag 2007

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-6112-2 ISSN 1613-3498

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter bei Herrn Professor Schlimmer am Institut für Werkstofftechnik der Universität Kassel.

Mein besonderer Dank gilt Herrn Professor Schlimmer für die Anregung zur vorliegenden Arbeit, die großzügige Unterstützung und Betreuung sowie die stete Bereitschaft zur fachlichen Diskussion. Herrn Professor A. Matzenmiller danke ich für die Übernahme des Korreferates und die Unterstützung während der Zeit, in der die Dissertation entstand.

Den Kollegen am Institut, insbesondere Karl Michael Mihm, Dr. Jörg Bornemann und Thomas Herwig sowie Rainer Hunke und Dieter Poschmann, danke ich für die Anregungen und die gute, konstruktive Zusammenarbeit.

Der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) sei für die finanzielle Unterstützung gedankt.

Melsungen, im Sebtember 2006

Kurzfassung

Die Wahl eines Klebstoffs hängt in besonderem Maße von der zu fügenden Verbindung ab. So kann z.B. ein Klebstoff, der bei steifen Fügeteilen hervorragende Klebergebnisse liefert, im Falle nachgiebiger Fügeteile ungeeignet sein. Insbesondere bei dünnen Fügeteilen, wie sie in der Praxis des Karosseriebaus verwendet werden, unterscheiden sich die Anforderungen an einen Klebstoff darüber hinaus bereits innerhalb einer Klebfuge. Diese Tatsache legt nahe, dass eine Klebverbindung durch das Einbringen von mehreren Klebstoffen in eine Klebfuge optimiert werden kann. In dieser Arbeit werden einschnittige Überlappklebverbindungen mit 1,7 mm dicken Stahlfügeteilen untersucht, bei denen im Bereich der Überlappungsenden epoxidharzbasierte Klebstoffe mit niedrigerem Elastizitätsmodul und höherer Verformbarkeit als im Mittelbereich verwendet werden.

Die in der Arbeit als "gradierte" Klebverbindungen bezeichneten Klebungen mit zwei Klebstoffen in einer Klebfuge werden sowohl rechnerisch mit Finite-Elemente-Berechnungen als auch experimentell untersucht. Dabei gehen die Berechnungen durch die Wahl klebstoffgerechter Materialmodelle und die experimentellen Untersuchungen durch umfangreiche Grundversuche, die auch Überlagerung von Torsion und Druck enthalten, über die bisherigen Veröffentlichungen auf dem Gebiet der gradierten Klebschichten hinaus.

Als Klebstoffe werden einkomponentige, heißhärtende, epoxidharzbasierte Klebstoffe der Firma Dow verwendet. Im Mittenbereich der Überlappung kommt immer der Klebstoff Betamate 5103 zum Einsatz, der den höchsten Elastizitätsmodul und die höchste Festigkeit innerhalb der Betamate-Reihe hat. In den Randbereichen werden, der Beanspruchung entsprechend, zähmodifizierte Klebstoffe eingesetzt, die eine große Dehnfähigkeit besitzen.

Die mechanische Klebstoffcharakterisierung erfolgt an stumpf geklebten Rohrproben. Mit ihnen können in der Klebschicht Schubspannungen sowie ein dreiachsiger Normalspannungszustand und Kombinationen aus beiden induziert werden. Zyklische Be- und Entlastungsversuche zeigen, dass sich die zähmodifizierten Klebstoffe näherungsweise elastoplastisch verhalten. Mit den Klebstoffen werden Zug- und Torsionsversuche durchgeführt sowie verschiedene Beanspruchungskombinationen mit Torsion und Zug sowie Torsion und Druck untersucht. Hieraus können Fließflächen im Hauptspannungsraum konstruiert werden, die, zusammen mit dem Verfestigungsverhalten, Basis für die Wahl des Materialmodells und der zugehörigen Parameter sind.

Bei den Finite-Elemente-Analysen wird unterschieden zwischen Berechnungen mit Materialmodellen, die in ABAQUS standardmäßig zur Verfügung stehen, und

solchen, bei denen das Materialmodell der Klebstoffe in einer Benutzerroutine implementiert ist. Bei den Berechnungen mit den ABAQUS-Materialmodellen werden der hochfeste Klebstoff des Mittenbereichs mit dem linearen Drucker-Prager-Modell und der zähmodifizierte Klebstoff der Außenbereiche mit dem allgemeinen Drucker-Prager-Exponentenmodell modelliert. Im Fall der Berechnungen mit dem benutzerdefinierten Materialmodell (UMAT) werden beide Klebstoffe mit der UMAT-Routine modelliert. Die Routine enthält ein auf Schlimmer zurückgehendes Materialmodell, dessen Fließbedingung in der ersten Invarianten des Spannungstensors und der zweiten Invarianten des Spannungsdeviators formuliert ist und das dadurch die starke Abhängigkeit der Klebstoffe von hydrostatischen Spannungszuständen berücksichtigen kann. Versagensbedingungen, die mit den verwendeten Materialmodellen verknüpft werden können, existieren in ABAQUS nicht.

Nach der Überprüfung der Anwendbarkeit der ausgewählten Materialmodelle durch Nachrechnung der Rohrprobenexperimente werden FE-Modelle der einschnittigen Überlappklebverbindung mit variierender Aufteilung des 20 mm langen Überlappungsbereiches erstellt. Anhand der Berechnungsergebnisse kann das Tragverhalten der gradierten Klebverbindungen verstanden und ein Kriterium zur geeigneten Aufteilung in Innenbereich und Außenbereiche angegeben werden. Mit beiden Materialmodellen lassen sich gut übereinstimmende Berechnungsergebnisse an den Dünnblechproben erzielen.

Zur Herstellung der Probekörper wird eine geeignete Fügevorrichtung konzipiert. Die Versuchsergebnisse bestätigen das Kriterium zur Aufteilung der Überlappungslänge und zeigen, daß im quasistatischen Versuch durch Gradierung eine Steigerung der Festigkeit von 10 % gegegenüber dem geeigneteren der beiden Ausgangsklebstoffe erzielt werden kann.

Um den Einfluss der "Gradierung" bei dynamischer Beanspruchung zu untersuchen, werden Wöhlerlinien für die gradierte Klebverbindung und die Klebverbindungen mit den Ausgangsklebstoffen erstellt. Die Bruchschwingspielzahlen der gradierten Klebungen betragen bei zwei der drei geprüften Lastniveaus ca. das Dreifache im Vergleich zu den Proben mit den Ausgangsklebstoffen. Die Verformungsmessungen zeigen, dass der spröde Klebstoff in der Überlappungsmitte verformungshemmend wirkt. Dadurch tritt das instationäre Kriechen bei den gradierten Klebverbindungen erst deutlich später ein als bei den ungradierten Klebverbindungen mit dem zähmodifizierten Klebstoff.

Die Ergebnisse machen deutlich, dass die gradierten Klebschichten insbesondere bei schwingender Beanspruchung zu einer deutlichen Verbesserung des Tragverhaltens einer Klebverbindung beitragen können.

Inhaltsverzeichnis

ΑI	SKÜ F	RZUNC	GS- UND FORMELZEICHEN-VERZEICHNIS	8
1	EIN	LEITU	NG	12
2	AUF	GABE	ENSTELLUNG	13
3	STA	ND V	ON FORSCHUNG UND TECHNIK	16
	3.1	Klebs	toffe	16
	3.2	Berec	hnung von Klebverbindungen	20
	3.3	Gradi	erte Klebschichten	23
4	AUS	WAH	L DER KLEBSTOFFE UND DES STAHLS	27
5	EXF	PERIM	ENTELLE UNTERSUCHUNGEN AN ROHRPROBEN ZUR	
	KLE	BSTO	FFCHARAKTERISIERUNG	29
	5.1	Probe	ngeometrie, Herstellung und Lagerung	30
	5.2	Prüfu	ng der Rohrproben	32
		5.2.1	Ermittlung der Gleitung während des Versuchs	33
		5.2.2	Ermittlung der Dehnung während des Versuchs	35
		5.2.3	Regelung von Dehnung und Gleitung während des Versuchs	37
		5.2.4	Spannungszustand in der Klebschicht beim Zugversuch am Rohr	46
	5.3	Ergeb	nisse für den Klebstoff Betamate 1496 V	47
		5.3.1	Torsion	47
		5.3.2	Zug	48
		5.3.3	Kombination $\alpha = 6$	49
		5.3.4	Kombination $\alpha = 2$	51
		5.3.5	Kombination $\alpha = \frac{2}{3}$	52
		5.3.6	Kombination $\alpha = -10$	54
		5.3.7	Kombination $\alpha = -6$	56
		5.3.8	Druck	58
		5.3.9	Gemeinsame Darstellung aller Beanspruchungsarten für den Klebstoff Betamate 1496 V	59
		5.3.10	Bestimmung der elastischen Materialkennwerte für den	
			Betamate 1496 V	65
	5.4	Ergeb	nisse für den Klebstoff Betamate 5103	67
			Torsion	67
		5.4.2	Zug	69
		5.4.3	Kombination $\alpha = 4$	70
		5.4.4	Kombination $\alpha = 1$	71
		5.4.5	Kombination $\alpha = -10$	73
		5.4.6	Kombination $\alpha = -6$	74

		5.4.7	Gemeinsame Darstellung aller Beanspruchungsarten für den Klebstof	
		5 4 0	Betamate 5103	76
			Bestimmung der elastischen Materialkennwerte beim Betamate 5103	80
	5.5		nisse für den Klebstoff Betamate 1185	81
			Torsionsversuch, Zugversuch und kombinierte Beanspruchungen	81
		5.5.2	Bestimmung der elastischen Materialkennwerte beim Betamate 1185	84
	5.6	_	eich des Schubspannung-Gleitung-Verhaltens und Spannung- ung-Verhaltens der unterschiedlichen verwendeten Klebstoffe	85
6	EXF	PERIM	ENTELLE ERMITTLUNG DER FLIEßFLÄCHEN	88
	6.1		nate 1496 V	88
	6.2		nate 5103	99
	6.3		nate 1185	104
	6.4	Norm	ierte Darstellung der Fließflächen für alle drei Klebstoffe	106
7			SUCHE ZUR KENNWERTERMITTLUNG AN DEM	
	FUC	SETEII	LWERKSTOFF	108
	7.1	Durch	ıführung der Prüfung	108
	7.2	Ergeb	onisse	110
8	FE-	BERE	CHNUNGEN AN DER ROHRPROBE	113
		8.1.1	Linearelastische Berechnungen	114
		8.1.2	Nachrechnung der Grundversuche für den Klebstoff Betamate 1496 V	
			mit dem Drucker-Prager-Exponentenmodell (DPE)	118
		8.1.3	Nachrechnung der Grundversuche für den Klebstoff Betamate 5103	
			mit dem linearen Drucker-Prager-Modell (LDP)	133
			Theorie nach Schlimmer (UMAT) und Parameteridentifikation	139
		8.1.5	Nachrechnung der Grundversuche für den Klebstoff Betamate 1496 V	
		016	mit der UMAT-Routine (Parameter: R. Mahnken) Nachrechnung der Grundversuche für den Klebstoff Betamate 1496 V	142
		8.1.6	mit der UMAT-Routine (Parameter: C. Barthel)	148
		8.1.7	Nachrechnung der Grundversuche für den Klebstoff Betamate 5103	140
		0.1.7	mit der UMAT-Routine (Parameter: R. Mahnken)	156
9	FE-	BERE	CHNUNGEN AN DER DÜNNBLECHPROBE	161
	9.1	Linea	relastische Berechnungen	164
	9.2	Berec	hnungen gradierter Klebverbindungen mit elastoplastischen	
		Mater	ialmodellen, die in ABAQUS implementiert sind	168
		9.2.1	Variation der Bereichslängen	168
		9.2.2	Materialmodell der Fügeteile	169
			Materialmodell für den Klebstoff Betamate 1496 V	170
			Materialmodell für den Klebstoff Betamate 5103	170
			Lasten	171
		9.2.6	Ergebnisse	171

9.3	Berec	chnungen gradierter Klebverbindungen mit der UMAT-Routine	180
	9.3.1	Variation der Bereichslängen	180
	9.3.2	Materialmodell der Fügeteile	180
	9.3.3	Materialmodell für den Klebstoff Betamate 1496 V	180
	9.3.4	Materialmodell für den Klebstoff Betamate 5103	180
	9.3.5	Lasten	180
	9.3.6	Ergebnisse	180
	9.3.7	Gegenüberstellung der Spannungen für eine Konstellation bei	
		verschiedenen Materialmodellen	190
10 FXF	PERIM	ENTELLE UNTERSUCHUNGEN AN KLEBVERBINDUNGEN	
		KLEBSTOFFEN IN EINER KLEBVERBINDUNG	194
10.1	Fügev	vorrichtung für gradierte Klebschichten	194
10.2	Herst	ellung und Prüfung von gradierten Klebschichten	198
10.3	Expe	rimentelle Ergebnisse für gradierte Klebverbindungen	202
	10.3.1	Festigkeiten im quasistatischen Versuch	202
	10.3.2	? Verformungsmessung an gradierten Klebschichten	205
11 SCI	HWING	GVERSUCHE	212
12 ZUS	SAMM	ENFASSUNG	219
13 LITI	ERATI	JR	226
ANHAI	NG		231

Abkürzungs- und Formelzeichen-Verzeichnis

Abkürzungen

CCD Charge-coupled Device

FE Finite Elemente

FEM Methode der Finiten Elemente

GOM Gesellschaft für optische Messtechnik

MPC Multi Point Constraint

Pos Position

UMAT User Material Routine in ABAQUS

2D. 3D zwei-, dreidimensional

tr Spuroperator

Einheiten

kN Kilonewton
min Minute
mm Millimeter
s Sekunde

°C Temperatur in Grad Celsius

Hz Hertz

MPa Megapascal

Nomenklatur

gradierte Klebschicht: Klebfuge mit zwei verschiedenen Klebstoffen,

symmetrische Anordnung

ungradierte Klebschicht: Klebfuge mit nur einem Klebstoff

Compliant-Bereiche: Außenbereiche einer gradierten Klebschicht
Stiff-Bereich: Der mittlere der drei Bereiche einer gradierten

Klebschicht

Probenform A: Doppelrohrprobe mit Innenradius/Außenradius =

50 mm / 60 mm

Probenform B: Doppelrohrprobe mit Innenradius/Außenradius =

56 mm / 60 mm

Probenform C: Doppelrohrprobe mit Innenradius/Außenradius =

54 mm / 60 mm

Formelzeichen

F

E_{calc}

а Parameter des Drucker-Prager-Exponentenmodells Parameter der Fließbedingung nach Schlimmer a_1, a_2 Parameter des plastischen Potentials nach Schlimmer a, a, h Parameter des Drucker-Prager-Exponentenmodells. Parameter des Verfestigungsansatzes bei der UMAT Hilfsgrößen C_1, C_2 Dicke Parameter des hyperbolischen Drucker-Prager-Modells ď Parameter des linearen Drucker-Prager-Modells d_{I DP} Interne Variable ("quasi Vergleichsdehnung") bei der UMAT е,, Fließbedingung nach Schlimmer f Plastisches Potential nach Schlimmer/Mahnken ĝ Abstand Parameter des hyperbolischen Drucker-Prager-Modells Abstand zwischen Befestigungsschraube und Aufnehmernadel für l_{mess,dehn} Zug beim biaxialen Wegaufnehmer Abstand zwischen Befestigungsschraube und Aufnehmernadel für Itors Torsion beim biaxialen Wegaufnehmer ABAQUS-Koordinate in Abhängigkeit von I, р Parameter des hyperbolischen Drucker-Prager-Modells p, Parameter des Drucker-Prager-Exponentenmodells $\boldsymbol{p}_{t_{\text{npe}}}$ ABAQUS-Koordinate in Abhängigkeit von J₂ q Parameter des Verfestigungsansatzes bei der UMAT q., Außenradius Zeit Verschiebung in Umfangsrichtung Verschiebung in Längsrichtung Fläche F Elastizitätsmodul abgeminderter Elastizitätsmodul Ecalc

Proportionalitätsfaktor beim Zugversuch am Rohr

abgeminderter Proportionalitätsfaktor beim Zugversuch am Rohr

F Kraft, Fließbedingung in ABAQUS-Nomenklatur G Schubmodul, plastisches Potential Erste Invariante des Spannungstensors Zweite Invariante des Spannungsdeviators J_{2} Μ Moment Torsionsmoment M. Р Punkt, Parameter des Verfestigungsansatzes bei der UMAT PosX. Positionen bei der Messung mit dem Laserextensometer PosY R Quotient aus Oberspannung und Unterspannung S Spannungsdeviator W Widerstandsmoment Υ Fließspannung Verhältniswert, Winkel α β Parameter des hyperbolischen Drucker-Prager-Modells Parameter des linearen Drucker-Prager-Modells BIDE Gleitung ν Dehnung Dehnungstensor ε Proportionalitätsfaktor, Hauptspannungen Querdehnzahl abgeminderte Querzahl V_{calc} Spannung Spannungstensor Spannungsamplitude σ_{a} Mittelspannung σ_{m} Oberspannung σ_{0} Unterspannung σ_{u} Parameter des Drucker-Prager-Exponentenmodells $\overline{\sigma}_{0}$ Schubspannung Spannungsamplitude bei Schubbeanspruchung Schuboberspannung

Schubunterspannung

 τ_{u}

φ	Verdrehwinkel
$arphi^{^\star}$	Winkel, die zu Extrema führen
$\phi_1^{^\star}$	Richtungswinkel der ersten Hauptdehnung
$\phi_2^{^\star}$	Richtungswinkel der zweiten Hauptdehnung
Δ	inkrementelle Änderung
Ψ	Parameter des Drucker-Prager-Exponentenmodells, Parameter des linearen Drucker-Prager-Modells
•	Nach der Zeit abgeleitete Größe
1	Einheitstensor zweiter Ordnung

Parameter des Drucker-Prager-Exponentenmodells

Indizes

∈

f Fügeteil
ges gesamt
p polar
t torsional
true wahre Größe
x, y, z Kartesische Koordinatenrichtungen

xy, xz, yz
 Richtung der Schubspannungen und Gleitungen
 F Fließgrenze
 K Klebschicht
 T Torsion

Z Zug

Verf Verfestigung

 ξ erste Achsrichtung des gedrehten Koordinatensystems

0 Ausgangszustand

1,2 erste und zweite Hauptrichtung

Exponenten

pl plastisch

H Hauptspannungsform

* Größe im transformierten Koordinatensystem