"Entwicklung eines zementbasierten Injektionsverfahrens unter Einsatz eines Erstarrungsbeschleunigers zur Sanierung nicht begehbarer Abwasserkanäle"

Von der Fakultät für Bauingenieurwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
genehmigte Dissertation

vorgelegt von

Jörg Schreiber

aus

Thuine

Berichter: Universitätsprofessor Dr.-Ing. Rainard Osebold

Universitätsprofessor Dr.-Ing. Rainer Schach Universitätsprofessor Dr.-Ing. Peter Doetsch

Tag der mündlichen Prüfung: 17. Oktober 2007

Schriftenreihe des Lehrstuhls für Baubetrieb und Projektmanagement ibb - Institut für Baumaschinen und Baubetrieb

Jörg Schreiber

Entwicklung eines zementbasierten Injektionsverfahrens unter Einsatz eines Erstarrungsbeschleunigers zur Sanierung nicht begehbarer Abwasserkanäle

> Shaker Verlag Aachen 2008

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

D 82 (Diss. RWTH Aachen, 2007)

Herausgeber: Univ.-Professor Dr.-Ing. Rainard Osebold für die Gesellschaft zur Förderung des Baubetriebs Aachen e.V.

Copyright Shaker Verlag 2008 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-7004-9 ISSN 1612-2798

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Der Wiederbeschaffungswert der öffentlichen Abwasserkanalisation in Deutschland beträgt nach aktuellen Schätzungen etwa 330 Milliarden Euro. Unterstellt man für neu gebaute Kanalstrecken eine Nutzungsdauer von 100 Jahren, müssten pro Jahr etwa 3,3 Milliarden Euro für die Erneuerung der deutschen Kanalisation bereitgestellt werden. In der jüngsten Vergangenheit haben die Kommunen jedoch nur etwa 1,6 Milliarden Euro pro Jahr in die Abwasserkanalisation investiert. Aus diesen Zahlen wird ersichtlich, welche Bedeutung kostengünstige Sanierungsverfahren besitzen, durch deren Einsatz eine möglichst lange Nutzungsdauer von Kanälen erreicht und ein frühzeitiger Austausch von Leitungen vermieden werden kann.

Lange Zeit galten Injektionsverfahren auf Basis von Kunstharzen als geeignetes Mittel, um schadhafte Abwasserkanäle wieder abzudichten und auf diese Weise den hohen Sanierungsbedarf im öffentlichen Leitungsnetz erfüllen zu können. Doch nach einigen Jahren intensiver Anwendung in den 1980er und 1990er Jahren versanken diese Injektionsverfahren u. a. aufgrund zu hoher Kosten und gleichzeitig geringem bzw. nur kurzzeitigem Sanierungserfolg praktisch wieder in der Bedeutungslosigkeit.

Herr Schreiber hat nun im Rahmen seiner Arbeit ein neues Injektionsverfahren auf mineralischer Basis entwickelt, das in nicht begehbaren Kanälen eingesetzt werden kann. Um die Sanierungsdauer für eine undichte Rohrverbindung auf nur noch wenige Minuten zu verkürzen, hat Herr Schreiber ein zweikomponentiges Injektionsmaterial konzipiert, dessen zwei Komponenten erst während der Injektion miteinander vermischt werden. Nach der Vermischung wird der Zementanteil der einen Komponente durch den Erstarrungsbeschleuniger der anderen Komponente zu einem schnelleren Ansteifen angeregt. Aufgrund der dadurch verkürzten Sanierungsdauer ermöglicht das neue Injektionsverfahren erstmals eine wirtschaftliche Sanierung mit mineralischen Injektionsmitteln auch von solchen Kanalhaltungen, die eine Vielzahl undichter Rohrverbindungen aufweisen. Die Neuentwicklung hat somit das Potenzial für einen hohen praktischen Nutzen.

Universitätsprofessor Dr.-Ing. Rainard Osebold

Meinen Eltern und meiner Frau Gabriela

Inhaltsverzeichnis	-
--------------------	---

1	EINLEITUNG	1
	1.1 AUSGANGSSITUATION	1
	1.2 ZIELSETZUNG	3
	1.3 VORGEHENSWEISE	4
2	KONZEPTION DES SANIERUNGSVERFAHRENS	6
	2.1 ANALYSE DER SANIERUNGSRANDBEDINGUNGEN	6
	2.1.1 Zustand der Kanalisation in Deutschland	6
	2.1.2 Schadensart Undichte Rohrverbindung	10
	2.1.3 Bodenverhältnisse in der Leitungszone	19
	2.2 ANFORDERUNGEN AN DAS INJEKTIONSMATERIAL	25
	2.2.1 Allgemeines	25
	2.2.2 Rheologische Anforderungen	27
	2.2.3 Frühstandfestigkeit	29
	2.2.4 Mechanische Eigenschaften und Dauerhaftigkeit	30
	2.2.5 Handhabung und Verarbeitbarkeit	32
	2.2.6 Wirtschaftlichkeit	33
	2.2.7 Umweltverträglichkeit	35
	2.3 KONZEPTION DES INJEKTIONSMATERIALS UND DER	00
	VERFAHRENSTECHNIK	36
	2.3.1 Injektionsmaterial	38
	2.3.2 Verfahrenstechnik	41
3	AUSWAHL UND EIGENSCHAFTEN DER BAUSTOFFE	43
	3.1 BENTONIT	43
	3.1.1 Allgemeines	43
	3.1.2 Grundlagen und Struktur des Bentonits	44
	3.1.3 Quellverhalten	46
	3.1.4 Bentonitsuspensionen	49
	3.1.5 Bentonit-Zement-Suspensionen	50
	3.1.6 Auswahl des Bentonits	52
	3.2 ZEMENT	52
	3.2.1 Allgemeines	52
	3.2.2 Auswahl des Zementes	53
	3.3 ZUSATZSTOFFE/FÜLLSTOFFE	55
	3.3.1 Allgemeines	55
	3.3.2 Auswahl des Füllstoffs	56

II Inhaltsverzeichnis

	3.4 ZUSATZMITTEL	57
	3.4.1 Allgemeines	57
	3.4.2 Fließmittel	57
	3.4.3 Beschleuniger	58
4	ENTWICKLUNG DES INJEKTIONSMATERIALS	61
	4.1 RHEOLOGIE VON MINERALISCHEN SUSPENSIONEN	61
	4.1.1 Definitionen	62
	4.1.2 Rheologisches Modell für zementhaltige Suspensionen	65
	4.1.3 Auswahl eines Viskosimeters	66
	4.1.4 Fließ- und Viskositätskurven	69
	4.1.5 Versuchsdurchführung	72
	4.1.6 Versuchsauswertung	74
	4.2 RHEOLOGISCHE UNTERSUCHUNGEN AN	
	BENTONITSUSPENSIONEN	74
	4.2.1 Fließverhalten von Bentonitsuspensionen	75
	4.2.2 Einfluss des Wasser-Feststoff-Wertes	76
	4.2.3 Einfluss der Mischtechnik	78
	4.2.4 Einfluss der Mischdauer	83
	4.3 RHEOLOGISCHE UNTERSUCHUNGEN AN ZEMENT-BENTONIT- SUSPENSIONEN	84
	4.3.1 Verfahrensweise der Suspensionsherstellung	84
	4.3.2 Einfluss des W/F-Wertes und der Bentonitdosierung	86
	4.3.3 Einsatz von Fließmitteln	92
	4.3.4 Bestimmung der Verarbeitungsdauer	96
	4.4 RHEOLOGISCHE UNTERSUCHUNGEN AN FLUGASCHE-	
	BENTONIT-SUSPENSIONEN	101
	4.4.1 Einfluss des W/F-Wertes und der Bentonitdosierung	101
	4.4.2 Einfluss der Beschleuniger-Dosierung auf das Ansteifverhalten	104
5	AUSWAHL UND ERPROBUNG DER MISCHTECHNIK FÜR DIE	400
	BESCHLEUNIGERZUGABE	108
	5.1 AUSWAHL DER MISCHTECHNIK	108
	5.1.1 Einsatzrandbedingungen	108
	5.1.2 Mischertypen	109
	5.1.3 Auswahl verschiedener Statikmischer für die Erprobung 5.1.4 Konzepte und Methoden zur Charakterisierung und	112
	5.1.4 Konzepte und Wethoden zur Charaktensierung und Beurteilung des Mischzustandes	115

Inhaltsverzeichnis III

	5.2 BESTIMMUNG DER MISCHGÜTE	117
	5.2.1 Versuchsaufbau	118
	5.2.2 Versuchsdurchführung	119
	5.2.3 Versuchsergebnisse	119
	5.3 BESTIMMUNG DER DURCHFLUSSEIGENSCHAFTEN	126
	5.3.1 Versuchsdurchführung	126
	5.3.2 Versuchsergebnisse	127
6	MECHANISCHE EIGENSCHAFTEN DES ERHÄRTETEN	
	INJEKTIONSMATERIALS	130
	6.1 ALLGEMEINES	130
	6.2 DRUCK- UND BIEGEZUGFESTIGKEIT	131
	6.2.1 Einfluss der Bentonitdosierung auf die Festigkeit	131
	6.2.2 Einfluss des Steinkohlenflugascheanteils auf die Festigkeit	133
	6.2.3 Einfluss des W/F-Wertes und des Fließmittels auf die Festigkeit	134
	6.2.4 Einfluss der Beschleunigerdosierung auf die Festigkeit	135
	6.3 E-MODUL	138
7	ERPROBUNG DES SANIERUNGSVERFAHRENS	139
	7.1 VERFAHRENSTECHNIK	139
	7.1.1 Mischtechnik	139
	7.1.2 Injektionspumpe	140
	7.1.3 Injektionspacker	142
	7.2 SANIERUNG EINZELNER KANALROHRVERBINDUNGEN	142
	7.2.1 Versuchsaufbau	142
	7.2.2 Versuchsdurchführung	146
	7.2.3 Versuchsergebnisse	147
	7.3 PRAXISNAHE ERPROBUNG IN PRÄPARIERTEN	
	KANALTESTSTRECKEN	157
	7.3.1 Versuchsaufbau	157
	7.3.2 Versuchsdurchführung	158
	7.3.3 Ergebnisse	159
8	BEURTEILUNG DER WIRTSCHAFTLICHKEIT	169
	8.1 ABSCHÄTZUNG DER KOSTEN UND NUTZUNGSDAUER DES	
	NEU ENTWICKELTEN INJEKTIONSVERFAHRENS	170
	8.1.1 Kosten der Injektionsverfahren auf Kunststoffbasis	170
	8 1 2 Kosten des neu entwickelten Injektionsverfahrens	172

IV Inhaltsverzeichnis

	8.1.3 Nutzungsdauer von Injektionsverfahren	178
	8.2 ABSCHÄTZUNG DER KOSTEN UND NUTZUNGSDAUERN FÜR ALTERNATIVE SANIERUNGSVERFAHREN	180
	8.2.1 Auswahl der Sanierungsverfahren für die Kostenvergleichsrechnung	180
	8.2.2 Erneuerung in offener Bauweise	182
	8.2.3 Renovierung mittels Schlauchlining	184
	8.3 DYNAMISCHE KOSTENVERGLEICHSRECHNUNG ZUR	
	BEURTEILUNG DER WIRTSCHAFTLICHKEIT	186
	8.3.1 KVR-Leitlinien	186
	8.3.2 Definition der Sanierungsrandbedingungen	192
	8.3.3 Dynamische Kostenvergleichsrechnungen	194
9	ZUSAMMENFASSUNG	202
10	LITERATUR	205
11	ANHANG	217