Entwicklung von integrierbaren Impedanz-NO_x-Gassensoren für den Hochtemperatureinsatz in extremen Bedingungen

Von der Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen der Brandenburgischen Technischen Universität Cottbus zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte Dissertation

vorgelegt von

Diplom-Physiker

Mathias Christian Stranzenbach

geboren am 09. April 1977 in Bergisch Gladbach

Vorsitzender: Prof. Dr.-Ing. habil. V. Michailov

Gutachter: Prof. Dr.-Ing. C. Leyens

Gutachter: Prof. Dr. rer. nat. habil. D. Schmeißer Gutachterin: Dr.-Ing. habil. B. Saruhan-Brings

Tag der mündlichen Prüfung: 08. April 2008

Berichte aus dem Lehrstuhl Metallkunde und Werkstofftechnik

Band 2/2008

Mathias Stranzenbach

Entwicklung von integrierbaren Impedanz-NOx-Gassensoren für den Hochtemperatureinsatz in extremen Bedingungen

Shaker Verlag Aachen 2008

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Cottbus, BTU, Diss., 2008

Copyright Shaker Verlag 2008 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-7531-0 ISSN 1863-6373

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit am Institut für Werkstoff-Forschung des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) in Köln.

Bei Herrn Prof. Dr.-Ing. habil. V. Michailov bedanke ich mich für die Übernahme des Vorsitzes der Prüfungskommission.

Mein Dank gilt Herrn Prof. Dr.-Ing. C. Leyens für die stete Betreuung, das rege Interesse am Fortgang dieser Arbeit und die Begutachtung als Erstgutachter.

Herrn Prof. Dr. rer. nat. habil. D. Schmeißer danke ich für die Begutachtung und das Interesse am Fortgang dieser Arbeit.

Mein besonderer Dank gilt Frau Dr.-Ing. habil. B. Saruhan-Brings für die Betreuung meiner Arbeit, die konstruktiven Diskussionen und für das Lektorat und die Begutachtung dieser Arbeit. Ihr Engagement und Ihre vielfältigen fachlichen Impulse haben wesentlich zum Gelingen dieser Arbeit beigetragen.

Mein spezieller Dank gilt Herrn Prof. Dr.-Ing. H. Voggenreiter und Herrn Prof. Dr.-Ing. C. Leyens für die Möglichkeit der Durchführung dieser Arbeit an Ihrem Institut, für die wissenschaftliche und organisatorische Unterstützung sowie das große Interesse an meiner wissenschaftlichen Ausbildung.

Herrn Dr.-Ing. M. Peters danke ich für sein hohes persönliches Engagement und Interesse am Fortgang dieser Arbeit und meiner Ausbildung. Mit seinem Einsatz hat er die Rahmenbedingungen für diese Arbeit geschaffen.

Herrn Dr.-Ing. U. Schulz danke ich für die hilfreichen Diskussionen, das fortwährende Interesse am Fortgang der Arbeit und das kritische Lektorat des Manuskripts dieser Arbeit.

Mein spezieller Dank gilt den Herren J. Brien, D. Peters, C. Kröder, Ing. grad. H. Mangers, R. Borath, K. Baumann und Frau U. Krebber für die hervorragende technisch-wissenschaftliche Unterstützung dieser Arbeit. Allen Kolleginnen und Kollegen des Instituts für Werkstoff-Forschung danke ich für die stets gute Arbeitsatmosphäre.

Meinen Eltern und meinen Brüdern danke ich besonders für die Ermöglichung meines Studiums und für ihre Geduld und Unterstützung in den vergangenen Jahren. Meiner Mutter danke ich für das Korrekturlesen des Manuskripts.

Mein herzlichster Dank gilt meiner Freundin Andrea Katharina Günther für Ihre Geduld, Unterstützung und Rücksichtnahme während der Anfertigung dieser Arbeit sowie für das Korrekturlesen des Manuskripts.

<u>Inhaltsverzeichnis</u> <u>I</u>

Inhaltsverzeichnis

Kapitel	1 Einleitung	1
1.1	Motivation	1
1.2	Abgasnormen	3
1.3	Bedarf	7
1.4	Mögliche Einsatzgebiete	9
Kapitel	2 Grundlagen	11
2.1	Chemische Gassensoren	11
2.2	Sensor-Layout	14
2.3	PVD-Verfahren	16
2.3.1	Elektronenstrahl-Verdampfen (EB-PVD)	18
2.3.2	Kathodenzerstäubung	19
2.4	Impedanz-Spektroskopie	21
Kapitel	3 Stand der Forschung	25
3.1	Mixed-Potential- und Impedanz-Gassensoren	25
3.1.1	Mixed-Potential-Sensoren	25
3.1.2	Impedanz-Sensoren	29
3.2	Einsatzbedingungen für einen Hochtemperatur-Gassensor	32
3.3	Ziele der Arbeit / Präzisierte Aufgabenstellung	34
Kapitel	4 Experimentelles	37
4.1	Herstellung der Sensor-Elemente	37
4.1.1	_	
4.1.2	Herstellung der Sensor-Elektroden	39
4.2	Sensorcharakterisierung	41
4.2.1	Aufbau der Messanlage, Konzipierung von SESAM	41
4.2.2	Versuche mit SESAM	44
4.2.3	Mikrostrukturelle Untersuchungen	45
4.2.4	Röntgenographische Untersuchungen	46
4.2.5	Katalytische Untersuchungen	46
4.2.6	Untersuchungen zum Alterungsverhalten	47
4.2.7	Simulation und Fit von Impedanz-Spektren	47
Kapitel	5 Ergebnisse	49
5.1	Einfluss der Elektrolyt-Alterung auf die Sensoreigenschaften	
5.2	Sensoren mit NiCr ₂ O ₄ und PYSZ- und FYSZ-Elektrolyt	
5.2.1	•	
5.2.2	-	

II Inhaltsverzeichnis

5.3	Sensoren mit NiO-Sensorelektrode und PYSZ- und FYSZ-Elektrolyt	64
5.3.1	Sensorcharakterisierung	64
5.3.2	Strukturelle Untersuchungen	69
5.3.3	Analyse der katalytischen Aktivität gegenüber NO	73
5.4	Sensor mit LaNiO ₃ -NiO-Sensorelektrode und PYSZ-Elektrolyt	75
5.4.1	Sensorcharakterisierung	
5.4.2	Strukturelle Untersuchungen	78
Kapitel 6	6 Diskussion	81
6.1	Sensor-Eigenschaften	81
6.1.1	Sensorparameter	81
6.1.2	Einfluss des Elektrolyten und der Gitterposition von Ni auf das	
Ser	nsorverhalten	91
6.2	Entstehung des Sensorsignals bei NO _x -Impedanz-Sensoren	93
6.2.1	Untersuchungen zu den Sensormechanismen an NiO	93
6.2.2	Auswertung der Impedanz-Spektren mittels Ersatzschaltbilder	95
6.3	Einflussfaktoren auf die Langzeitstabilität	104
6.4	Schlüsselparameter für eine praktische Anwendung	109
Kapitel 7	7 Ausblick	. 113
Kapitel 8	3 Zusammenfassung	.117
Literatur		.121
Anhang		.129