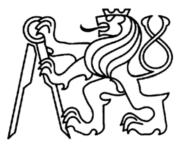

CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Electrical Engineering Department of Measurement


Application of Magnetic Sensors for Navigation Systems

DOCTORAL THESIS

2007

Jan Včelák

Czech Technical University in Prague Faculty of Electrical Engineering Department of Measurement

Application of Magnetic Sensors for Navigation Systems

DOCTORAL THESIS

Ph.D. Programme: Electrical Engineering and Information Technology Branch of study: Measurement and instrumentation

Supervisor: Doc. Ing. Petr Kašpar, CSc.

2007

Jan Včelák

Reports on Sensors and Instrumentation

Volume 2

Jan Včelák

Application of Magnetic Sensors for Navigation Systems

Shaker Verlag Aachen 2009

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Czech Technical University Prague, Diss., 2007

Copyright Shaker Verlag 2009 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8322-7738-3 ISSN 1868-5056

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

ACKNOWLEDGEMENT

I would like to express my acknowledgements to supervisor Petr Kašpar and to Pavel Ripka and Antonín Platil for their scientific guidance, valuable comments and patience during my studies.

I also want to thank to my colleagues Jan Kubík, Michal Malátek, Vojtěch Petrucha, Michal Janošek, Aleš Cerman, Michal Vopálenský, Pavel Mlejnek, Jiří Saneistr for their cooperation in "MagLab" team, their long-lasting friendship and support even in bad times.

My thanks also belong to my parents Iva Včeláková, Jaroslav Včelák and sister Kateřina Včeláková for their patience, support and given possibility to study.

CONTENTS:

1	Introduction	1
2	State of the art	3
	2.1 Navigation systems used	3
	2.1.1 Radio navigation systems	4
	2.1.1.1 Terrestrial radio navigation systems	4
	2.1.1.1.1 Radio direction finders	5
	2.1.1.1.2 Hyperbolic position estimation	6
	2.1.1.2 Satellite radio navigation systems	7
	2.1.1.2.1 US Department of Defense's NAVSTAR Global Positioning Sys (GPS)	stem 9
	2.1.1.2.2 Russian Federation's Global Positioning System (GLONASS)	11
	2.1.2 Inertial navigation systems	11
	2.1.2.1 Sensors used for strap down systems (accelerometers & gyroscopes)) 12
	2.2 Electronic compasses	17
	2.2.1 Gyroscopic compass	17
	2.2.2 Electronic magnetic compasses and magnetometer modules	19
	2.2.3 Sensors for magnetic compasses	22
	2.2.4 AMR sensors	22
	2.2.5 Fluxgate sensors	27
	2.2.6 Published calibration techniques for multi-sensor magnetometers and	
	compasses.	31
3	Goals of doctoral thesis	32
4	Theoretical background	34
	4.1 Basic used coordinate frames for navigation	34
	4.1.1 True Inertial Frame	34
	4.1.2 Earth-Centered Inertial Frame (ECI)	34
	4.1.3 Earth-Centered Earth – Fixed (ECEF) Frame	35
	4.1.4 Navigation Frame	35
	4.1.5 Body Frame	35
	4.1.6 Wander Azimuth Frame	35
	4.2 Coordinate frames transformations	37
	4.3 Euler's Angles	37
	4.3.1 Rotation through roll angle φ	38
	4.3.2 Rotation through pitch angle θ	39
	4.3.3 Rotation through yaw angle ψ	40
	4.3.4 Euler's angles transformation from inertial to body reference coordinate	
	system	41
	4.3.5 Direction Cosine Matrix	43

	4.4 Geomagnetic field of Earth	44
	4.4.1 Magnetic field vector	44
	4.4.2 The Geodynamo	47
	4.4.3 Field variation in long timescales	48
	4.4.4 The Earth's Ionosphere and Diurnal-Field	d Variation 48
	4.4.5 Earth's magnetosphere	49
	4.4.6 Magnetic field on the test site	52
	4.5 The Earth's field of gravity	53
	4.6 Estimation of basic parameters from measu	
	4.6.1 Noise processing	55
	4.6.2 Effective number of bits and signal to no	ise ratio 56
5	5 Electronic compass design	57
	5.1 Electronic compass with dual axis sensor	57
	5.1.1 Error caused by sensors non-orthogonalit	y 60
	5.2 Compass with three-axis magnetic sensor a	nd tilt compensation 64
	5.2.1 Error caused by sensors non-orthogonalit	y 65
	5.2.2 Simplification of general deviation matrix	x A 68
6	6 Scalar calibration	70
	6.1 Presumptions for the Scalar Calibration	70
	6.1.1 Homogeneity of measured field	70
	6.1.2 Measurement of field in the calibration a	rea 71
	6.1.3 Data Acquisition	71
	6.2 Iteration algorithm to process the data	73
7	8	case and with the second sensor
tr	triplet	77
	7.1 Consequences of sensors misalignments	81
	7.1.1 Influence of the sensor x misalignment	82
	7.1.2 Influence of the sensor y misalignment	83
	7.1.3 Influence of the sensor z misalignment	85
	7.1.4 Consequences of misalignments to pitch,	roll and azimuth calculation 87
	7.2 Calibration of misalignment angles	90
	7.2.1 Rotation of the compass case in roll	90
	7.2.2 Estimation of accelerometer misalignmen	t angle $\alpha_{\phi-A}$ 95
	7.2.3 Rotation of the compass in azimuth	96
8	8 Developed and verified compass modules	99
	8.1 Developed compass with AMR sensors and	accelerometers 99
	8.1.1 Hardware construction	100
	8.1.2 Basic sensor parameters	104

14	Refe	erences	174
13	Pub	lications	172
12	List	of Abbreviations	171
	11.2.5	Fork holder for AMR compass prototype	170
	11.2.4	Fork holder for PCB fluxgate compass prototype	169
	11.2.3	Theodolite holder bed – PERTINAX	168
	11.2.2	Theodolite holder- Carl Zeiss THEO 080A	167
	11.2.1	PCB fluxgate compass case - technical drawing	166
	11.2 T	echnical designs	166
	11.1 P	C software description	165
11	Арр	endices	165
	10.2 Is	sues of further research and improvement	163
	10.1 C	onclusion summary	162
10	Con	clusions	159
9	Using	the calibration procedures for fluxgate gradiometer	157
	8.3.2	Results of misalignment angles calibration	155
	8.3.1	Results of Scalar calibration for HMR2300 magnetometer	152
	8.3 C	ommercially produced magnetometer module Honeywell HMR2300	152
	8.2.6	Accuracy verification measurements	149
	8.2.5	Results of sensors misalignments calibration	141
	8.2.4	Results of scalar calibration	134
	parame	1 0	127
	8.2.3	Compass with PCB fluxgate sensors and accelerometers – basic sensors	120
	8.2.1	Mechanical construction and sensor placement	119
	8.2 D 8.2.1	eveloped compass with PCB fluxgate sensors and accelerometers Hardware construction	<i>119</i> 119
	8.1.3 8.1.4	Results of sensors misalignment calibration	108
	8.1.3	Results of scalar calibration	108