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Abstract

In fault-tolerant systems, redundancy in terms of hardware, software, repeated com-
putations, or additional information is used to increase dependability. As redundancy
is costly and might influence performance in a negative way, stochastic dependability
models are used for a quantitative assessment of attributes like reliability, safety, and
availability.

The thesis first summarizes the existing modeling concepts for fault tolerant systems,
namely combinational methods (e.g. fault trees and reliability block diagrams), state-
based models (e.g. Markov chains, stochastic Petri nets, and models based on a
stochastic process algebra), as well as hybrid methods, which combine different kind
of modeling paradigms.

Furthermore, it describes a novel, application-oriented approach for the evaluation
of fault-tolerant systems. In this approach, the system is modeled using a high-
level, application specific input model, which is automatically transformed into a
lower-level formal model. Using existing software packages, the formal model is in
turn transformed into a mathematical model which can be analyzed numerically.
The results of this evaluation are presented within the scope of the high-level input
model, though.

The novel approach is able to calculate the overall system’s dependability from in-
formation given on the components it is built of, including information on the com-
ponents themselves (e.g. MTTF- and MTTR-values), information on which combi-
nation of component failures imply a system failure (i.e. the redundancy structure
of the system), as well as information on inter-component dependencies like failures
with a common cause, failure propagation, different kind of redundancy strategies,
non-dedicated repairmen and so on.

After first describing the basic design principles, the thesis also describes four spe-
cific tools which have been implemented according to these principles. The Simple
but Extensive, Structured Availability Modeling Environment (OpenSESAME) was
developed for the evaluation of High-Availability systems, The Safety Modeling En-
vironment (SafeME) is tailored towards safety-critical systems, Information Flow
Diagrams (IFD) are used to model emergency shutdown systems, and The Copula-



BAsed Reliability and Availability Modeling Environment (COBAREA) is intended
for the analysis of fault-tolerant digital circuits.

In general, the evaluation of stochastic dependability models is very demanding in
terms of CPU-time and memory. To alleviate this problem, the thesis also presents
a novel divide-and-conquer algorithm allowing to divide large dependability models
into independent parts which can be analyzed separately. The algorithm was applied
in the tools mentioned above, but could be reused in similar evaluation approaches,
as well.
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