DIE DIGITI DER SYNAPSIDA:

ANATOMIE, EVOLUTION

UND

KONSTRUKTIONSMORPHOLOGIE

Inaugural-Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

an der

Fakultät für Biowissenschaften

der Universität Witten/Herdecke

vorgelegt von:

Susanna Kümmell

aus Esslingen

2009

Mentor: Prof. Dr. Wolfgang Schad

Externer Referent: PD Dr. Eberhard Frey

Tag der Disputation: 19.05.2009

Wissenschaftliche Schriftenreihe des Instituts für Evolutionsbiologie und Morphologie Universität Witten/Herdecke

herausgegeben von Prof. Dr. rer. nat. Wolfgang Schad

Susanna Kümmell

Die Digiti der Synapsida:

Anatomie, Evolution und Konstruktionsmorphologie

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Universität Witten/Herdecke, Univ., Diss., 2009

Die vorliegende Publikation wurde auf 80g Motif Recycled Plus matt (100% Altpapier) gedruckt.

Kontakt:

Universität Witten/Herdecke Institut für Evolutionsbiologie und Morphologie Stockumer Straße 10-12 D - 58453 Witten

susanna.kuemmell@uni-wh.de

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8738-2 ISSN 1869-6120

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • E-Mail: info@shaker.de

INHALTSVERZEICHNIS

Zusammenfassung		9
1	Einführung	11
	Danksagung	13
	Abkürzungen	14
2	Material und Methoden	
2.1	Fossiles Material	17
2.2	Paläogeographische Entwicklung der Synapsida und Auswahl der	
	fossilen Arten	17
2.3	Terminologie	20
2.4	Messmethoden	22
2.5	Die rezenten Vergleichstiere	23
2.6	Allometrie	25
TEIL I		
3	ANATOMIE DER SYNAPSIDEN-DIGITI	
3.1	Arthrologie der nicht-mammaliaformen Therapsida (sine Oligokyphus)	27
3.2	Pelycosauria	
	Übersicht	33
3.2.1	Osteologie	34
3.2.2	Arthrologie	35
3 .3	Biarmosuchia	2.0
2.2.1	Übersicht	36
3.3.1	Osteologie und Arthrologie	36
3.4.	Dinocephalia	27
2 4 1	Übersicht	37
3.4.1	Osteologie der Digiti von <i>Titanophoneus potens</i>	37
3.4.2	Digitalgelenke und das I. Distale-Metapodialgelenk von	38
3.5	Titanophoneus potens Anomodontia	38
3.5	Übersicht	40
3.5.1	Osteologie der Digiti der Anomodontia <i>sine</i> Dicynodontia	42
3.5.1	Digitalgelenke und das I. Distale-Metapodialgelenk der Anomodontia	42
3.3.2	sine Dicynodontia	44
3.5.3	Osteologie und Arthrologie der Digiti der Dicynodontia und das	44
3.3.3	I. Distale-Metapodialgelenk	45
	Eodicynodon, Robertia, Diictodon und Kingoria	46
	Cistecephalus	48
	Lystrosaurus	50
	Dicynodon, Oudenodon, Kannemeyeria, Tetragonias und Stahleckeria	52
3.6	Gorgonopsia	32
3.0	Übersicht	57
3.6.1	Osteologie der Digiti der Gorgonopsia	58
3.6.2	Digitalgelenke und das I. Distale-Metapodialgelenk der Gorgonopsia	60
5.0.2	Arctognathus curvimola	62
3.7	Therocephalia	02
,	Übersicht	63
3.7.1	Osteologie der Digiti der Therocephalia	65

3.7.2	Digitalgelenke und das I. Distale-Metapodialgelenk der Therocephalia	67
3.8	Cynodontia Übersicht	69
3.8.1	Osteologie der Digiti der nicht-mammaliaformen Cynodontia	09
3.0.1	(sine Oligokyphus)	72
3.8.2	Digitalgelenke und das I. Distale-Metapodialgelenk der Cynodontia	, 2
2.0.2	(sine Oligokyphus)	74
3.8.3	Osteologie der Digiti von <i>Oligokyphus</i> und den mesozoischen	, .
	Mammaliaformes	77
3.8.4	Digitalgelenke und das I. Distale-Metapodialgelenk von Oligokyphus	
	und den mesozoischen Mammaliaformes	78
4	DISKUSSION: KONSTRUKTIONSMORPHOLOGISCHE ÜBERLEG	GUN-
	GEN ZUR ANATOMIE DER SYNAPSIDEN-DIGITI	
4.1	Nicht-mammaliaforme Therapsida (sine Oligokyphus)	105
	Digitalbogen	125
	Gewichtsverteilung im Autopodium	128
	I. Metapodial-Phalangealgelenk und das I. Distale-Metapodialgelenk	128 130
	Bewegungsablauf in der Propulsionsphase Greifen	130
4.2	Pelycosauria	134
4.3	Biarmosuchia	134
4.4	Titanophoneus potens	135
4.5	Anomodontia	133
4.5.1	Anomodontia <i>sine</i> Dicynodontia	137
4.5.2	Dicynodontia	138
	Dicnodontia sine Cistecephalus und Lystrosaurus	138
	Cistecephalus	140
	Lystrosaurus	141
4.6	Gorgonopsia	141
4.7	Therocephalia	143
4.8	Cynodontia	
4.8.1	Nicht-mammaliaforme Cynodontia (sine Oligokyphus)	145
4.8.2	Oligokyphus und mesozoische Mammaliaformes	
	Digitalbogen	147
	Mittelgelenk	151
	Grundgelenk	152
	I. Digitus und das I. Distale-Metapodialgelenk	152
	Kryptobaatar dashzevegi und ?Eucosmodon	154
	Gobiconodon ostromi	156
TEIL 1	II	
5	LÄNGENANGLEICHUNG DER DIGITI UND ANGLEICHUNG DER VERHÄLTNISSE DER MEDIAL- ZU DEN BASALPHALANGE	EN
5.1	Biarmosuchia	
5.1.1	Phalangenformel	159
5.1.2	Längenangleichung der Digiti	159
5.1.3	Verhältnis der Medialphalanx o. der Medialphalangen zur Basalphalanx	
	und der 1. Phalanx I zum I. Metapodiale	159

5.2	Dinocephalia	
5.2.1	Phalangenformel	161
5.2.2	Längenangleichung der Digiti	163
5.2.3	Verhältnis der Medialphalanx o. der Medialphalangen zur	
	Basalphalanx und der 1. Phalanx I zum I. Metapodiale	165
5.3	Anomodontia	
5.3.1	Phalangenformel	165
5.3.2	Längenangleichung der Digiti	165
5.3.3	Verhältnis der Medialphalanx zur Basalphalanx und der 1. Phalanx I	100
3.3.3	zum I. Metapodiale der basalen Anomodontia	168
5.4	Gorgonopsia	100
5.4.1	Phalangenformel	168
5.4.1		
	Längenangleichung der Digiti	170
5.4.3	Verhältnis der Medialphalanx o. der Medialphalangen zur	170
	Basalphalanx und der 1. Phalanx I zum I. Metapodiale	170
5.5	Therocephalia	1.55
5.5.1	Phalangenformel	177
5.5.2	Längenangleichung der Digiti	177
5.5.3	Verhältnis der Medialphalanx zur Basalphalanx und der	
	1. Phalanx I zum I. Metapodiale	177
5.6	Cynodontia	
5.6.1	Phalangenformel	178
5.6.2	Längenangleichung der Digiti	182
5.6.3	Verhältnis der Medialphalanx o. der Medialphalangen zur	
	Basalphalanx und der 1. Phalanx I zum I. Metapodiale	182
5.6.4	Verhältnis der Medialphalanx zur Basalphalanx und der	
	1. Phalanx I zum I. Metapodiale bei rezenten Säugern	187
6	DISKUSSION: LÄNGENANGLEICHUNG DER DIGITI UND ANGLE	CT-
	CHUNG DER VERHÄLTNISSE DER MEDIAL- ZU DEN	
	BASALPHALANGEN	
6.1	Zusammenfassung der Trends	189
6.2	Bisherige Literatur	190
6.3	Längenangleichung der Digiti in Zusammenhang mit Bildung	170
0.5	des Digitalbogens	192
6.4	Nutzungsoptionen des Digitalbogens	193
0.4	Konstruktionsniveaus	194
	Ökonomisierung des Bewegungsablaufes und Erhöhung der Andruckkraft	194
		194
	Verlängerung des Substratkontakts der Endballen und Abnahme ihrer	104
	Rotation auf der Auflagefläche bei Spreizgängern	195
	Verlängerung des Substratkontakts der Grundballen	197
	Metapodium als Hebel der Propulsion	198
	Federwirkung des Digitalbogens	200
	Nutzungsoptionen des Digitalbogens bei Springern	201
	Nutzungsoptionen des Digitalbogens beim Greifen	203
	Schonung der Krallen durch den Digitalbogen	203
	Nutzungsoptionen des Digitalbogens beim Klettern	203
6.5	Bildung und Verschwinden der disciformen Phalangen und die	
	Längenangleichung der Digiti des gesamten Autopodium	205
6.6	Modell der Evolution des Digitalbogens	207

TEIL III

7	LOKOMOTION UND ANDERE NUTZUNGSOPTIONEN DER		
5 1	DIGITI BEI DEN THERAPSIDA UND REZENTEN SÄUGERN	211	
7.1	Einleitung	211	
	Einteilung der rezenten Säuger in Lokomotionstypen	211	
	Klettermethoden der Vergleichssäuger	212	
	Grabmethoden der Vergleichssäuger	214	
	Faktoren, welche die Indizes beeinflussen	218	
7.2	Akropodiale Axonie bei rezenten Mammalia und fossilen Synapsida	221	
	Kategoriebildung	221	
	Ergebnisse für die rezenten Mammalia	224	
	Ergebnisse für die fossilen Synapsida	227	
7.3	Phalangenindex bei rezenten Mammalia und fossilen Cynodontia		
	samt einigen Pelycosauria	•	
	Kategoriebildung	231	
	Ergebnisse für die rezenten Mammalia	233	
	Ergebnisse für die fossilen Cynodontia samt einigen Pelycosauria	239	
7.4	Längen-Breiten-Index (LBI) IV bei rezenten Mammalia und		
	fossilen Cynodontia		
	Kategoriebildung	240	
	Ergebnisse für die rezenten Mammalia	241	
	Ergebnisse für die fossilen Cynodontia	245	
7.5	Ungualphalanx-Digitalindex (UDI) bei rezenten Mammalia		
	und fossilen Cynodontia samt einigen basalen Therapsida		
	und einigen Pelycosauria		
	Kategoriebildung	246	
	Ergebnisse für die rezenten Mammalia	247	
	Ergebnisse für die fossilen Cynodontia samt einigen basalen		
	Therapsida und einigen Pelycosauria	252	
7.6	Stauchung von Metapodialia, Basal- und Medialphalangen		
	und die graviportale Lokomotion der späten Dicynodontia		
7.6.1	Einleitung	253	
7.6.2	Die Verkürzung von Metapodialia, Basal- und Medialphalangen	254	
7.6.3	Längen-Breiten-Index (LBI) der Basalphalanx III	258	
7.6.4	Verhältnis der Medialphalanx zur Basalphalanx und der		
	1. Phalanx I zum I. Metapodiale	262	
7.7	Kurzes Akropodium der Therocephalia und der		
	Längen-Breiten-Index (LBI) III	265	
8	DISKUSSION: LOKOMOTION UND ANDERE NUTZUNGSOPTI		
	DER DIGITI BEI DEN THERAPSIDA UND REZENTEN SÄUGER	2N	
8.1	DISKUSSION DER NUTZUNGSOPTIONEN DER INDIZES		
8.1.1	Axonie des Akropodium	268	
	Axonie bei Kletterern	268	
	Axonie bei terrestrischen Tieren	274	
	Axonie bei scansorischen Tieren	274	
	Axonie bei Gräbern	275	
	Übertragbarkeit der Kategorien der akropodialen Axonie von		
	Vergleichssäugern auf die fossilen Synansida	2.78	

8.1.2	Phalangenindex	
	Nutzungsoptionen	279
	Kategorien des Phalangenindex	281
	Übertragbarkeit der Kategorien des Phalangenindex von den	
	Vergleichssäugern auf die fossilen Synapsida	284
8.1.3	Längen-Breiten-Index (LBI) IV	
	Nutzungsoptionen	285
	Größenabhängigkeit des LBI	286
	Kategorien des LBI	287
	Übertragbarkeit der Kategorien des LBI von den Vergleichssäugern	
	auf die fossilen Therapsida	288
8.1.4	Ungualphalanx-Digitalindex (UDI)	
	Nutzungsoptionen und Kategorien des UDI	289
	Vergleich des UDI von rezenten Mammalia, fossilen Cynodontia	
	und anderen Synapsida	291
8.1.5	Stauchung von Metapodialia, Basal- und Medialphalangen	
0.1.0	und die graviportale Lokomotion der späten Dicynodontia	292
	Metapodialia- und Basalphalangenverkürzung gegenüber dem	2)2
	Humerus bzw. Femur	292
	Längen-Breiten-Index (LBI) III	293
	Verhältnis der Medialphalanx zur Basalphalanx und der	2)
	1. Phalanx zum I. Metapodiale	294
	Ausnahmen von den Trends	294
8.1.6	Kurzes Akropodium der Therocephalia und der	2)-
0.1.0	Längen-Breiten-Index (LBI) III	295
	Langen-Dieten-Index (LDI) III	2)2
8.2	LOKOMOTIONSOPTIONEN BEI EINZELNEN THERAPSIDA	297
8.2.1	Lokomotionsoptionen bei einzelnen Cynodontia einschließlich der	271
0.2.1	mesozoischen Mammaliaformes	
	a) Procynosuchus delaharpeae	297
	b) Thrinaxodon liorhinus	301
	c) ?Scalenodon BMNH R 9391	304
	d) Trirachodon	305
	e) Chiniquodon theotonicus	306
	f) Morganucodon watsoni, Eozostrodon parvus, Megazostrodon	300
	rudnere, Erythrotherium parringtoni	308
		311
	g) Jeholodens jenkinsi	
	h) Kryptobaatar dashzevegi	315
	i) Henkelotherium guimarotae	318
	j) Sinodelphys szalayi	322
	k) Eomaia scansoria	325
8.2.2	Lokomotionsoptionen bei einzelnen Dicynodontia	226
	1) Eodicynodon oosthuizeni	329
	m) Diictodon	331
	n) Robertia broomiana	334
	o) Kingoria nowacki	334
	p) Cistecephalus	335
	q) Dicynodon	339
	r) Lystrosaurus	343
	s) Kannemeyeria, Tetragonias njalilus und Stahleckeria potens	349

8.2.3	Lok	omotionsoptionen eines Gorgonopsiden	
	Arct	ognathus curvimola ("Lycaenodontoides bathyrhinus")	353
8.2.4	Lok	omotionsoptionen eines Therocephaliden	
	Gla	nosuchus	356
9	ZUS	SAMMENFASSUNG DER ERGEBNISSE	358
10	LIT	ERATURVERZEICHNIS	363
11	ANI	HÄNGE	
Anhang	: I:	Tabelle der fossilen Synapsida	385
Anhang	II:	Tabelle der rezenten Vergleichssäuger	391
Anhang	III:	Glossar	394
Anhang	IV:	Bewegungsverhalten von Vergleichssäugern	400
Anhang	V :	Merkmale, die bei rezenten Säugern auf eine grabende bzw.	
		arboreale Lebensweise hinweisen	411

Zusammenfassung

Im Rahmen dieser Arbeit wurden die Autopodia und Längen anderer Skelettelemente von 96 Synapsida-Arten aus einer Zeitspanne zwischen Perm und Oberkreide vermessen. Thema der Arbeit ist die Evolution der Autopodia, insbesondere der Digiti der Synapsida basierend auf anatomischen und konstruktionsmorphologischen Untersuchungen. Anhand von 139 rezenten Säuger-Arten wurden Indizes der Digiti erarbeitet, mit denen die jeweilige Lokomotionsweise der Tiere kategorisiert wurde. Soweit dies aufgrund der unterschiedlichen Vorkonstruktion sinnvoll erschien, wurde anhand der an den Vergleichssäugern erarbeiteten Indizes die Lokomotion von 26 fossilen Arten rekonstruiert.

Für die fossilen Synapsida wurden die Freiheitsgrade und Exkursionswinkel der Digitalgelenke und des I. Distale-Metapodialgelenkes rekonstruiert (Teil I). Demnach besaßen die Therapsida einschließlich der mesozoischen Mammaliaformes, außer *Gobiconodon*, in den Digiti II-V einen Digitalbogen wie die meisten heutigen Säuger. Die Mittelgelenke wurden also während der Propulsionsphase nicht dorsal extendiert. Auch im I. Digitus war bei den meisten nicht-mammaliaformen Therapsida im I. Distale-Metapodialgelenk ein Digitalbogen vorhanden, bei den mesozoischen Mammaliaformes und bei einigen Therapsida jedoch nicht.

Die nicht-mammaliaformen Therapsida, insbesondere Gorgonopsia und *Titanophoneus*, besaßen Greifautopodia. Der I. Digitus konnte, außer vermutlich bei den Anomodontia, opponiert oder teilopponiert werden. Mit zunehmender Extensions- bzw. Dorsalextensionsoption in den Digitalgelenken wurden die Exkursionswinkel der Abduktions- und Rotationsfreiheitsgrade in den Digitalgelenken größer, vor allem im Grundgelenk. Durch die mögliche Abduktion und Rotation der Digiti wurde am Ende der Propulsionsphase die beim Spreizgang auftretende Rotation teilweise kompensiert und damit die Rotation der Endballen auf dem Substrat vermindert. Während der Evolution der Therapsida schränkten sich die Rotations- und Abduktionsfreiheitsgrade der Digitalgelenke immer mehr ein. Dies ist auf die Abnahme der Abund Adduktion der Gliedmaßen in der Propulsionsphase zurückzuführen.

Der Trend der Längenangleichung der Digiti wird in Teil II untersucht. Die Entstehung und das Verschwinden der disciformen Phalangen wird mit der Bildung und der Funktion des Digitalbogens bei der Lokomotion in Zusammenhang gebracht. Dafür spricht, dass die Phalangen der langen lateralen Digiti am Zenit des Digitalbogens verkürzt werden und nicht alle Phalangen eines Digitus gleichermaßen. Die proximal gelegenen Medialphalangen, die durch die Längenangleichung verschwinden, haben durch ihre Lage im Digitalbogen kaum Hebelwirkung. Durch die Verkürzung der lateralen Digiti entsteht jeweils ein etwa gleiches Verhältnis zwischen der Medial- und der Basalphalanx und damit etwa gleiche Hebelverhältnisse in den Digiti II-V der Autopodia.

Im Autopodium mit Digitalbogen kommt es zur Ausbildung von Sohlenballen, wodurch die Krallen zunehmend den Kontakt zum Substrat und damit ihre Bedeutung an der Propulsion verlieren. Sie blieben scharf und konnten z.B. zum Ergreifen und Fixieren von Beute genutzt werden. Die Evolution des Digitalbogens ermöglichte weiterhin die Ausbildung einer Z-Konfiguration von Metapodiale, Basal- und Medialphalanx. Diese Elemente bauen über Sehnenspannung elastische Energie auf, die am Ende der Propulsionsphase freigesetzt wird und die Propulsionsleistung verbessert. Der Digitalbogen führt zudem zur Abnahme der Rotation des Autopodium auf der Auflagefläche und damit zu einer verbesserten Haftleistung. Die Z-Konfiguration ist ökonomischer als die Bogenkonfiguration in den Digiti der Vorläuferkonstruktionen. Die Reduktion der Anzahl funktionaler Gelenke, durch die Evolution der disciformen Phalangen und ihrem anschließenden Verlust, stabilisierte die Z-Konfiguration. Die terrestrischen Therapsida mit der Säugerphalangenformel 2-3-3-3-3 und teilabduzierten Gliedmaßen weisen meist leicht ektaxone Akropodia auf mit nahezu gleichlangen Digiti. Die Längenangleichung der Digiti ist bei den vielen Gräbern unter den Therapsida am weitesten

fortgeschritten. Für die Kratzgräber unter den frühen Therapsida waren etwa gleichlange Digiti besonders günstig.

Die Digiti lassen, wegen ihres Substratkontakts, in besonderer Weise Schlüsse über die Lokomotion von Tieren zu und liefern damit auch Hinweise auf die Lokomotion von fossilen Formen (Teil III). Indizes der Digiti, die an den Vergleichssäugern die Kategorisierung von Lokomotionstypen erlauben, werden auf die fossilen Synapsida, wenn möglich, übertragen und die Funktionsweise der Autopodia bei der Lokomotion und der Hauptlokomotionstyp rekonstruiert und überprüft.

Neu als Gräber identifiziert wurden *Procynosuchus, Chiniquodon, Jeholodens, Kryptobaatar, Eodicynodon, Arctognathus* und *Glanosuchus. Lystrosaurus* und die Kannemeyeriiformes waren graviportal. *Lystrosaurus* lebte semiaquatisch und war vermutlich ein Kopfgräber, während die Kannemeyeriiformes mit den Manus graben konnten. *Henkelotherium* wurde als arborealer Krallenkletterer eingestuft.