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Executive Summary

The installation of the German offshore test field alpha ventus in the North Sea
marks the beginning of a new era of offshore wind energy application. Fueled
by European renewable energy targets and the increasing reliability of the
technology, offshore wind energy has become a multi-billion euro market that
attracts the interest of many stakeholders. Consequently, there is a potential
of rapid growth of that market over the next decade.

The successful deployment of offshore wind turbines in a large scale will re-
quire innovative, lightweight, safe, and cost-effective support structures. For
the severe North Sea conditions in water depths around 30m and more,
braced or lattice support structures like tripod or jacket seem to be the pre-
ferred solution. Taking into account the dynamic interrelation of those support
structures and their internal dynamics with the wind turbine in numerical mod-
els for dynamic simulations becomes crucial for a reliable and cost-effective
design.

Therefore, in this thesis a new analysis approach is implemented and verified
that takes the complete offshore wind turbine consisting of rotor nacelle as-
sembly, tower, and substructure into account. This is achieved by coupling
Poseidon, a finite element code specifically designed for the simulation of lat-
tice offshore support structures by the author, to the quasi-industry standard
wind turbine simulation code Flex5, which was available to the author in the
version of the Endowed Chair of Wind Energy at the University of Stuttgart.

In lack of measurement data from real turbines with complex support struc-
tures the simulation results of the international benchmarking project OC3
have been used to verify the approach. Very good agreement with the results
of other codes participating in that project could be achieved. The turbine
model that is used within OC3, the NREL 5MW Baseline Turbine, is taken as
reference turbine for the further investigations in the thesis, too.

The approach is applied to investigate the excitation of local vibrations of sup-
port structures for offshore wind turbines in combined aero-servo-hydro-elastic
simulations. The parameters that influence the local dynamics are analyzed
separately by means of coupled modal analysis at the example of a reference
jacket. In subsequent coupled analyses in the time domain it can be shown
how local vibrations of the braces of the jacket are excited by coupling effects
between local brace modes with modes of the rotor nacelle assembly.

Based on the analyses it is concluded that particularly structures with internal
modes at comparatively low eigenfrequencies are prone to excitation of local
vibrations due to coupling effects. It is therefore recommended to identify po-
tential sources of resonance by means of coupled modal analysis. Potential
savings in the detailed structural design will pay off the additional computa-
tional effort required for fully coupled analyses in case significant contribution
from local vibrations is to be expected.






Kurzzusammenfassung

Mit der Errichtung des Offshore Testfelds alpha ventus in der Deutschen
Nordsee beginnt ein neues Zeitalter der Windenergienutzung. Angetrieben
durch europaische Vereinbarungen zum Ausbau der Erneuerbaren Energien
und durch die zunehmende Zuverlassigkeit dieser Technologie ist die Offsho-
re Windenergie zu einem Multi-Milliarden Euro Markt herangewachsen der in
den kommenden Jahren ein enormes Wachstumspotenzial aufweist.

Um Offshore Windenergieanlagen im groen MaRstab errichten zu kdénnen,
werden innovative, leichte, sichere und wirtschaftliche Tragstrukturen flr diese
Anlagen benétigt. Fur die Standorte in der Nordsee mit Wassertiefen von 30m
und mehr sind so genannte aufgeldste Tragstrukturen wie der Tripod oder das
Jacket die bevorzugten Varianten. Die Betrachtung der wechselseitigen Be-
einflussung zwischen Windenergieanlage und Tragstruktur sowie deren inter-
ner Dynamik ist unabdingbar fiir eine zuverlassige und wirtschaftliche Bemes-
sung.

In dieser Arbeit wird daher ein neuer Losungsansatz implementiert und verifi-
ziert, in dem die gesamte Offshore Windenergieanlage bestehend aus Rotor-
Gondel-Einheit, Turm und Substruktur in Betracht gezogen wird. Dazu wird
das vom Verfasser entwickelte Programm Poseidon, ein Finite-Elemente-
Programm speziell fiir die Simulation von aufgeldsten Offshore-Strukturen, mit
dem weit verbreiteten Windenergieanlagensimulationsprogramm Flex5 ge-
koppelt, welches in der Version des Stiftungslehrstuhls Windenergie der Uni-
versitat Stuttgart zur Verfliigung stand.

Der Ansatz wird anhand von Ergebnissen des internationalen Benchmarking
Projekts OC3 verifiziert. Es kann eine sehr gute Ubereinstimmung mit den Er-
gebnissen anderer Simulationsprogramme, die in dem Projekt vertreten sind,
erreicht werden. Das Modell der Windenergieanlage, das flr die Berechnun-
gen in OC3 verwendet wird, die NREL 5MW Baseline Turbine, wird auch fir
die weiteren Berechnungen als Referenzanlage herangezogen.

Der Ansatz wird verwendet, um die Anregung lokaler Schwingungen der Trag-
strukturen unter kombinierter aero-servo-hydro-dynamischer Beanspruchung
zu untersuchen. Die das lokale Schwingverhalten beeinflussenden Parameter
werden separat mit Hilfe gekoppelter Modalanalysen am Beispiel eines Refe-
renz-Jackets analysiert. In anschlieRenden Zeitbereichsanalysen wird gezeigt,
wie lokale Schwingungen durch Koppelungseffekte zwischen den inneren Mo-
den des Jackets und den Blattern der Windenergieanlage angeregt werden.

Auf der Grundlage der Untersuchungen wird festgestellt, dass insbesondere
Strukturen mit inneren Moden vergleichsweise niedriger Eigenfrequenzen zu
durch Kopplungseffekte verursachten lokalen Schwingungen neigen. Es wird
daher empfohlen, potentielle Resonanzquellen friihzeitig durch gekoppelte
Modalanalysen zu identifizieren. Die so erzielten Materialeinsparungen wer-
den den zusatzlichen rechnerischen Aufwand fir eine voll gekoppelte Analyse
aufwiegen.
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Nomenclature

Acronyms and Abbreviations

acc.
BEM

cf.

COG
DEL
DIBt
DOF

FE / FEM
FFT

IEC

LAT
MSL
NREL
NTM
NWP
0OC3
OWT
PSD
RCM
RNA
SWE

GL

GH

IEA

eq./ egs.
RISQ

IWES

according

Blade-element-momentum theory

confer

Centre of gravity

Damage equivalent load

Deutsches Institut fir Bautechnik

Degree of freedom

Finite element method

Fast Fourier Transform

International Electrotechnical Commission
Lowest astronomical tide

Mean sea level

National Renewable Energy Laboratory, USA
Normal turbulence model

Normal wind profile

Offshore Code Comparison Collaborative
Offshore wind turbine

Power spectral density

Rainflow counting method

Rotor nacelle assembly

Endowed Chair of Wind Energy, University of Stuttgart
Germanischer Lloyd

Garrad Hassan and Partners Ltd.
International Energy Agency

Equation / Equations

National Laboratory for Sustainable Energy at the Technical
University of Denmark

Fraunhofer Institute for Wind Energy and Energy System
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CWMT
LUH
DTU
SCADA

Symbols

v(@)
V(Zref)
Vhub

Vave
Vin, Vout

Vr

Ui

Zref

Technology

Fraunhofer Center for Wind Energy and Marine Technology

Leibniz Universitat Hannover

Technical University of Denmark

Supervisory Control And Data Acquisition

[m]
[s]
[s]
[m/s]
[m/s]
[m/s]
[m/s]
[m/s]

[m/s]

[m/s]
[m]
[m]

longitudinal flow induction factor

tangential flow induction factor

structural acceleration normal to the member
water particle acceleration normal to the member
hydrodynamic added mass coefficient
aerodynamic drag coefficient

hydrodynamic drag coefficient

aerodynamic lift coefficient

hydrodynamic inertia coefficient

water depth

diameter of a tubular structural member
significant wave height

turbulence intensity

reference turbulence intensity acc. to IEC 61400
n-th spectral moment of a stochastic process
wall thickness of a tubular structural member
peak period

zero-up-crossing period

mean wind speed at height z

mean wind speed at reference height z¢
10-minute mean wind speed at hub height
annual mean wind speed at hub height
cut-in, cut-out wind speed

relative velocity of the flow normal to the member
surface

hourly mean wind speed at 10m above sea surface
height coordinate

reference height for definition of wind profile
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Y [-] shape parameter for the JONSWAP spectrum
n [m] water surface elevation

Gy [m/s] standard deviation of wind speed

o [-] wind shear exponent

\% [ dynamic amplification factor/function

n [-] frequency ratio

Q [rad/s] excitation frequency

® [rad/s] natural frequency

D [ damping ratio

Parts of an Offshore Wind Turbine according to IEC 61400-3
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Figure 1: Parts of an offshore wind turbine, taken from IEC 61400-3



