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Abstract

Fluid flows are ubiquitous in our daily life from our internal biomechanical activities to
meteorological phenomena. Most of flows around us are in turbulence, which is crucial
for high rate of transfer and mixing of momentum and heat through fluid flows. In
industry, turbulence is purposely utilized for efficient mixing of momentum and heat.
Turbulent flows consist of thousands of vortices in nature with a wide range of scales in
time and in space. Energy produced in large scales is transferred into small scale until
it finally dissipates into heat. Resolving flow velocities over a wide range with a small
uncertainty remains still a challenge in fluid mechanics even with currently available
measurement techniques. Especially, the lack of spatial resolution in the measurement
techniques severely restricts us from investigating flow phenomena occurring at small
spatial scales in high Reynolds turbulent shear flows.

Laser Doppler anemometry (LDA) has been used as a non-invasive single-point measure-
ment technique of local flow velocities for over 40 years. The technique has a spatial
resolution of around 30 wm and the measurement uncertainty of 0.3 % in a best case.
Main advantages of this technique are the relatively high spatial resolution and small
measurement uncertainty for a wide range of flow velocities. However, the spatial resolu-
tion is still not sufficent to capture the fine scale structures of turbulent flows.

The purpose of this thesis work is to provide a new measurement technique with a spatial
resolution sufficiently high compared to the smallest spatial scale of turbulence together
with a small uncertainty of velocity measurements. The new measurement technique is
aimed to the investigations of fine scale structures in turbulent shear flows. The present
thesis reports on the investigations and applications of novel laser Doppler velocity profile
sensors for the study of fluid flows. This new sensor achieves a spatial resolution in
the range of 107% m with a measurement uncertainty in the range of 107* at the same
time. Hence, the uncertainties are at least one magnitude of order smaller than those of
conventional LDA. The high spatial resolution and small measurement uncertainty are
achieved without reducing the size of the measurement volume compared to conventional
LDA. As the new sensor provides both velocities and positions of individual tracer particles
passing through the measurement volume, high spatially resolved velocity profile along
one-dimensional line is captured without the needs of any preliminary assumptions on
the flow. This feature of the sensor could provide new opportunities for demanding
investigations of complex turbulent shear flows at high Reynolds numbers such as in
highly three-dimensional or separated flows where no analogy is established.

Fundamentals of the velocity profile sensor were investigated before they are applied
to real fluid flows. The spatial resolution and measurement uncertainty were evaluated
based on theory and experiments. Due to the unique features of the sensor, adaptive
signal processing techniques and statistical analysis methods were developed for velocity



v

measurements in fluid flows. New calibration method was proposed for minimizing the
systematic uncertainty of the sensor, since the resulting measurement uncertainty is ulti-
mately determined by calibration process. Feasibility of the sensors were confirmed in two
types of laminar flows: uniform laminar flow and laminar boundary layers. In the uni-
form laminar flow, the measurement uncertainty was compared directly to the ones with
hot-wire anemometry and a conventional LDA. In the laminar boundary layers, Blasius
velocity profiles were captured by the new sensors until very close to the wall.

The new sensors were applied in a fully developed two-dimensional turbulent channel flow
for fundamental study of turbulence. The resulting turbulence statistics of the streamwise
velocity in the near-wall region showed comparable behaviors of the available direct nu-
merical simulation (DNS) data. Moreover, the higher order moments measured with the
new sensors exhibited consistent dependencies on the Reynolds number. The Reynolds
number dependency was also observed in DNS studies of channel flows and this clearly
demonstrated the high capability of the new sensor. The sensor was further extended for
two types of new measurements. One was spatially resolved local flow accelerations and
the other was two-point velocity correlations for the first time. Feasibilities were studied
with experiments including the measurements of local flow acceleration in a stagnation

flow and two-point spatial correlation in a turbulent wake flow.

In conclusion, powerful potentials of the sensor were demonstrated for spatially high
resolved measurements of flow velocities with a small measurement uncertainty. The
featured information of high spatially resolved flow velocities inside the measurement
volume should bring new insights on various types of complex turbulent shear flows,

which are not resolvable with any other conventional measurement techniques.
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