BESTIMMUNG DER BEANSPRUCHUNG KERAMISCHER VORTRIEBSROHRE IM BAUZUSTAND UNTER VERWENDUNG VON DRUCKÜBERTRAGUNGSRINGEN AUS KUNSTSTOFF

Von der Fakultät für Bauingenieurwesen

der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Ulrich Sven Bohle

Berichter: Universitätsprofessor Dr.-Ing. Rainard Osebold Universitätsprofessor Dr.-Ing. Markus Thewes Universitätsprofessor Dr.-Ing. Michael Raupach

Tag der mündlichen Prüfung: 01.12.2010

Schriftenreihe des Lehrstuhls für Baubetrieb und Projektmanagement ibb - Institut für Baumaschinen und Baubetrieb

Ulrich Bohle

Bestimmung der Beanspruchung keramischer Vortriebsrohre im Bauzustand unter Verwendung von Druckübertragungsringen aus Kunststoff

> Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2010)

Herausgeber: Univ.-Professor Dr.-Ing. Rainard Osebold für die Gesellschaft zur Förderung des Baubetriebs Aachen e.V.

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-9743-5 ISSN 1612-2798

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Der Rohrvortrieb hat als unterirdisches Bauverfahren zum Einbau von Kanalrohren zunehmend an Bedeutung gewonnen. Getragen wurde diese Entwicklung durch Verbesserungen in der Maschinen- und Steuertechnik, aber auch durch Weiterentwicklungen im Bereich der Rohrwerkstoffe. Einen wesentlichen Bestandteil in der Bauverfahrenstechnik stellt der Druckübertragungsring dar, der zur Verteilung der zuweilen hohen Vorpresskräfte, die von den hydraulischen Pressen im Startschacht auf das jeweils letzte Rohr aufgebracht werden und sicher von Rohr zu Rohr übertragen werden müssen, zwischen die Rohre eingelegt wird. Dieses wichtige Bauteil wird seit den Anfängen des Rohrvortriebs annähernd unverändert aus Holz oder Holzwerkstoffen gefertigt, was weniger der besonderen mechanischen Eignung dieser Werkstoffe als vielmehr dem günstigen Preis geschuldet ist.

So können beim Rohrvortrieb immer wieder Schäden beobachtet werden, die in keinem direkten Zusammenhang mit offensichtlichen Mängeln bei der Bauausführung, wie beispielsweise einer Überschreitung der zulässigen Presskraft, stehen. Untersuchungen haben gezeigt, dass die Ursache für die Schäden auf das Werkstoffverhalten der Holzwerkstoffe zurückgeführt werden kann. Dieses ist durch eine ansteigende Verfestigung charakterisiert, die mit einer Zunahme der Belastung einhergeht und dazu führt, dass die Druckübertragungsringe insbesondere in kritischen Vortriebssituationen ihre Eignung verlieren, die Vorpresskraft in der Fuge auf eine möglichst große Fläche zu verteilen.

An dieser Stelle setzt die Arbeit von Herrn Bohle an, der die Auswirkungen von Druckübertragungsringen aus Kunststoff auf die Beanspruchung von Vortriebsrohren untersucht. Hierbei fokussiert er seine Betrachtungen auf Vortriebsrohre aus Steinzeug, da dieser Werkstoff eine im Vergleich zu anderen Rohrwerkstoffen hohe Festigkeit aufweist. Hierdurch fallen die negativen Eigenschaften der Holzwerkstoffe besonders ins Gewicht. Zudem ermöglicht die hohe Festigkeit geringe Rohrwandstärken und schmalere Druckübertragungsringe, was einen höheren Materialpreis kompensiert.

Tastversuche mit Druckübertragungsringen aus Kunststoff haben allerdings gezeigt, dass aus einer Querverformung druckbeanspruchter Kunststoffringe Zugspannungen resultieren, die bereits frühzeitig zu Beschädigungen an den Rohrspiegeln führen können. Dies ist ein Hinweis darauf, dass sich die Beanspruchung von Vortriebsrohren bei einer Verwendung von Druckübertragungsringen aus Kunststoff grundlegend von der Beanspruchung mit Druckübertragungsringen aus Holzwerkstoffen, die nur eine vernachlässigbare Querverformung aufweisen, unterscheidet.

Herr Bohle entwickelt daher im Rahmen seiner Arbeit ein Verfahren zur Bestimmung dieser charakteristischen Beanspruchung. Da die relevanten mechanischen

Eigenschaften von Kunststoffen im Bereich hoher Druckspannungen bisher weitgehend unbekannt sind, stellt er ein umfangreiches Prüfprogramm zu Ermittlung der maßgeblichen Eingangsgrößen auf. Mit einem entwickelten Materialgesetz, das für die charakteristische Beanspruchung angepasst und in Versuchsserien validiert wurde, wird die Beanspruchung von Vortriebsrohren aus Steinzeug in kritischen Vortriebssituationen bestimmt. Zudem wird mit einer Parameterstudie die optimale Geometrie von Druckübertragungsringen aus Kunststoff ermittelt.

Die Ergebnisse der Untersuchungen werden in ein Verfahren zur Bestimmung zulässiger Vorpresskräfte überführt, das auf dem Berechnungsverfahren des überarbeiteten Arbeitsblatts 161 der DWA basiert. Hierdurch wird das Aufstellen einer prüffähigen Statik im Rahmen gültiger Regelwerke ermöglicht, was eine Voraussetzung für einen Einsatz von Druckübertragungsringen aus Kunststoff in der Praxis darstellt. Die Erforschung und Entwicklung bietet die Grundlagen für die breite Umsetzung in der Praxis des Rohrvortriebs.

Universitätsprofessor Dr.-Ing. Rainard Osebold

INHALTSVERZEICHNIS

1	EINLEITUN	G / MOTIVATION	1
	1.1 AUSGAN	IGSSITUATION	1
	1.2 ZIELSET	ZUNG UND VORGEHENSWEISE	3
	1.3 ABGREN	IZUNG	4
2	STAND DE	R TECHNIK	6
	2.1 Rohrvo	DRTRIEB	6
	2.1.1 H	listorische Entwicklung	6
	2.1.2 E	Bauverfahren des Rohrvortriebs	7
	2.1.3 M	<i>l</i> aschinentechnik	9
	2.1.4 N	lormung und Regelwerke	14
	2.2 Vortrii	EBSROHRE	16
	2.2.1 A	Anforderungen an Vortriebsrohre	17
	2.2.2 V	Verkstoffe	18
	2.2.3 F	Rohrverbindungen	22
	2.3 EINWIRK	KUNGEN AUF VORTRIEBSROHRE	23
	2.3.1 E	Belastungen in Rohrlängsrichtung	24
	2.3.2 E	Belastungen in Rohrquerrichtung	27
	2.4 DRUCKÚ)BERTRAGUNGSRINGE	29
	2.4.1 A	Allgemeine Anforderungen an Druckübertragungsringe	29
	2.4.2 V	Verkstoffe für Druckübertragungsringe	30
	2.4.3 L	Intersuchungen zum Werkstoffverhalten	32
	2.5 UNTERS	SUCHUNGEN ZUR DRUCKSPANNUNGSVERTEILUNG IN DER ROHRFUGE	38
	2.6 STATISC	CHE BERECHNUNG DER ZULÄSSIGEN VORPRESSKRAFT	40
	2.6.1 A	Allgemeines	40
	2.6.2 V	/erfahren nach ATV A 161	41
	2.6.3 A	Alternative Berechnungsverfahren	44
	2.6.4 N	/erfahren nach Entwurf DWA A 161	49
	2.7 ZUSAMN	IENFASSUNG UND FAZIT	55
	2.8 ANFORD	DERUNGEN AN DRUCKÜBERTRAGUNGSRINGE AUS KUNSTSTOFF FÜR	
	Vortrii	EBSROHRE AUS STEINZEUG	57

3	MECHANISCHES VERHALTEN VON KUNSTSTOFFEN	61
	3.1 ALLGEMEINES	61
	3.2 EINTEILUNG VON KUNSTSTOFFEN	62
	3.2.1 Elastomere	63
	3.2.2 Thermoplaste	63
	3.2.3 Thermoplastische Elastomere	63
	3.2.4 Duroplaste	63
	3.3 MECHANISCHE WERKSTOFFKENNWERTE	64
	3.4 PRÜFVERFAHREN ZUR ERMITTLUNG VON DRUCKKENNWERTEN	65
	3.4.1 Druckversuch nach DIN EN ISO 604	65
	3.4.2 Kegelstauchversuch	66
	3.5 VORVERSUCH ZUR ABSCHÄTZUNG DER DRUCKSPANNUNGS-	
	Stauchungseigenschaften	69
	3.5.1 Versuchsaufbau	70
	3.5.2 Messergebnisse	71
	3.5.3 Zusammenfassung der Vorversuche	76
	3.6 WERKSTOFFGESETZE ZUR BESCHREIBUNG DES MECHANISCHEN VERHALTENS VON	N
	THERMOPLASTISCHEN KUNSTSTOFFEN	78
	3.6.1 Kurz- und Langzeitverhalten unter Zugbelastung	78
	3.6.2 Mathematische Ansätze zur Beschreibung des Werkstoffverhaltens	80
	3.6.3 Grenzen aktueller Werkstoffgesetze	90
	3.7 Fazit	91
4	EXPERIMENTELLE BESTIMMUNG DES WERKSTOFFVERHALTENS VON	02
		33
	4.1 ERWEITERTES FROFVERFARREN ZUR DESTIMMUNG DES DRUCKSFANNUNGS-	94
	4.1.1 Auswahl der Prüfwerkstoffe	94
	4 1 2 Frweiterte Prüfungen an würfelförmigen Prüfkörpern	96
	4.1.3 Untersuchung des Reibverhaltens zwischen Kunststoff und Steinzeu	a104
	4.2 BESCHREIBLING DES WERKSTOFFVERHALTENS	110
	4.2.1 Zusammenfassung der Messergebnisse	110
	4 2 2 Überleitung der Fraebnisse in ein emnirisches Werkstoffassetz	111

5	NU	MERIS	CHE SIMULATION MITTELS FEM	120
	5.1	Метн	ODE DER FINITEN ELEMENTE	121
	5.2	IMPLE	MENTIERUNG DES WERKSTOFFGESETZES IN DIE FE-SOFTWARE MARC	128
	5.3	VALID	IERUNG DES WERKSTOFFGESETZES DURCH EXPERIMENTELLE	
		UNTE	RSUCHUNGEN	129
		5.3.1	Simulation der Würfeldruckprüfungen	129
		5.3.2	Simulation von Prüfungen an plattenförmigen Prüfkörpern	133
	5.4	BERE	CHNUNG DES SPANNUNGSZUSTANDS IN VORTRIEBSROHREN UNTER	
		Vort	RIEBSBEDINGUNGEN	138
		5.4.1	Allgemeines	138
		5.4.2	Aufbau der FE-Modelle	139
		5.4.3	Ergebnisse	141
	5.5	Parai	METERSTUDIE	152
		5.5.1	Allgemeines	152
		5.5.2	Parameter und Versuchsprogramm	152
		5.5.3	Ergebnisse	154
		5.5.4	Optimierung der Querschnittsgeometrie	160
	5.6	ZUSAN	MENFASSUNG	163
6	ERI	PROB	UNG UND VALIDIERUNG UNTER IN SITU NAHEN	
	RA	NDBE	DINGUNGEN	166
	6.1	Allge	MEINES	166
	6.2	VERS	JCHE IM GROßVERSUCHSSTAND	166
		6.2.1	Versuchsaufbau und -programm	166
		6.2.2	Messtechnik	168
		6.2.3	Auswertung der Messergebnisse und Vergleich mit den Ergebnisse Simulation	n der 170
	6.3	VERS	JCHE IN DER VERSUCHSBAHN	174
		6.3.1	Allaemeines	174
		6.3.2	Versuchsaufbau	174
		6.3.3	Versuchseraebnisse	177
	6.4	Fazit		180

7	BERECHNUNGSVERFAHREN ZUR BESTIMMUNG DER ZULÄSSIGEN		
	VORPRESSKRAFT	181	
	7.1 ALLGEMEINES	181	
	7.2 ENTWICKLUNG DES BERECHNUNGSVERFAHRENS	181	
	7.2.1 Nachweiskonzept	181	
	7.2.2 Ermittlung der erforderlichen Eingangsparameter	183	
	7.2.3 Berechnungsbeispiel	186	
	7.3 Fazit	187	
8	ZUSAMMENFASSUNG UND AUSBLICK	189	
	8.1 ZUSAMMENFASSUNG	189	
	8.2 BEURTEILUNG DER ERGEBNISSE AUS BAUBETRIEBLICHER SICHT	192	
	8.3 AUSBLICK	193	
9	LITERATUR	194	
10	ANHANG	200	

Abbildungsverzeichnis

Abbildung 2.1:	Auflistung der Verfahren des Rohrvortriebs nach DWA A 125	8
Abbildung 2.2:	Hauptkonstruktionselemente des Mikrotunnelverfahrens	10
Abbildung 2.3:	Rechtwinkligkeit der Stirnflächen	18
Abbildung 2.4:	Werkstoffe der Vortriebsrohre anteilig an der Jahresleistung 2007 im Netz der Berliner Wasserbetriebe	19
Abbildung 2.5:	Auswahl von Rohrwerkstoffen in Abhängigkeit der Nennweite	20
Abbildung 2.6:	Rohrfuge mit einseitig starrem Führungsring (li.) und gleitendem Führungsring(re.)	23
Abbildung 2.7:	Belastungssituationen beim Rohrvortrieb	25
Abbildung 2.8:	Zusammensetzung des Eindringwiderstandes bei Schilden mit mechanischer Stützung und/oder vollflächigem Abbau	26
Abbildung 2.9:	Führungskräfte beim Rohrvortrieb	28
Abbildung 2.10:	Druckübertragung zwischen abgewinkelten Vortriebsrohren	29
Abbildung 2.11:	Prüfkörper aus Spanplatte und Polyurethan	31
Abbildung 2.12:	Druckspannungs-Stauchungsdiagramm einer 15mm dicke Sperrholzplatte (li.) E-Moduln verschiedener Werkstoffe bei Wiederbelastung (re.)	ə 33
Abbildung 2.13:	E-Moduln von Buchenholz- und Tischlerplatte (li.), Druckspannungs- Stauchungsdiagramm nach Hornung (re.)	34
Abbildung 2.14:	E _{P,20} -Modul für eine 16mm dicke Spanplatte V100	36
Abbildung 2.15:	σ -ε-Diagramm einer Standardprüfung an einer 22mm dicken Spanplatte V100 (li.), 4. Belastungäste isoliert (re.)	37
Abbildung 2.16:	Standardprüfung an einer durchfeuchteten 22mm dicken Spanplatte V100 (li.) Standardprüfung an einer Fichtenholzplatte, Raumklima (re.)) 38
Abbildung 2.17:	Verformungs- und Druckspannungsverteilung in der Rohrfuge bei einem Druckübertragungsring aus trockener Spanplatte	39
Abbildung 2.18:	Druckspannungsverteilung in der Rohrfuge bei linearem und quadratische Verlauf	em 40
Abbildung 2.19:	Spannungsquotient in Abhängigkeit des Fugenklaffungsmaßes	42
Abbildung 2.20:	Kräftegleichgewicht nach Scherle für die Lastfälle gekrümmte Gradiente (oben) und ungleiche Ausmitte (unten)	45
Abbildung 2.21:	Verteilung der Querschnittsfläche über der Laufvariablen z	47
Abbildung 2.22:	Bemessungsnomogramm zur Bestimmung der zulässigen Vorpresskraft durch Längsbeanspruchung bei kubischer Spannungsverteilung in der Bebriuge	18
Abbildung 2 23	Rechenwert (vers/l - in Abhängigkeit des Rohrdurchmessers DN	51
Abbildung 2.23.	Rejwerte Ker und Ker zur Vermeidung von Dandebeletzungen und von	51
Abbildung 2.24:	Rissen aus Spaltzug	53

Abbildung 2.25:	Spannungsverhältnis $\sigma_{max}\!/\sigma_0$ in Abhängigkeit vom Fugenklaffungsmaß $z_k\!/d_{a,min}$	54
Abbildung 2.26:	Feuchtigkeitsbeanspruchung von Druckübertragungsringen	56
Abbildung 2.27:	Schadensbilder an Vortriebsrohren aus Beton und Steinzeug	57
Abbildung 3.1:	Weltverbrauch an wichtigen Werkstoffen	62
Abbildung 3.2:	Verformungsverhalten in Abhängigkeit des Kegelwinkels	67
Abbildung 3.3:	Versuchsaufbau der Druckprüfung	70
Abbildung 3.4:	Druckspannungs-Stauchungsverhalten eines Prüfkörpers aus Polyurethan (PU) links, und aus Kautschuk rechts	71
Abbildung 3.5:	Druckspannungs-Stauchungsverhalten eines Prüfkörpers aus einem thermoplastischen Elastomer (li.) und aus einem Duroplast (re.)	72
Abbildung 3.6:	Druckspannungs-Stauchungsverhalten eines Prüfkörpers aus Polyamid (PA12, li.) und aus ultrahochmolekularem Polyethylen (PE UHMW, re.)	73
Abbildung 3.7:	Druckspannungs-Stauchungsverhalten eines Verbundwerkstoffs aus Polyamid (PA6) und aus Polyurethan (PU)	75
Abbildung 3.8:	Druckspannungs-Stauchungsverhalten eines Verbundwerkstoffs aus Polyamid (PA6) und aus Polyethylen (PE)	75
Abbildung 3.9:	Schematische Abhängigkeit des Werkstoffverhaltens eines Thermoplasts von der Belastungsgeschwindigkeit (li.)und von der Temperatur (re.)	; 79
Abbildung 3.10:	Zeitabhängiges Werkstoffverhalten unter Zugbelastung	80
Abbildung 3.11:	2-Parameteransatz nach Schöche	83
Abbildung 3.12:	Feder-Dämpfer-Paar nach Kelvin-Voigt (li.) und nach Maxwell (re.)	84
Abbildung 3.13:	Feder-Dämpfer-Element nach dem Burgers-Modell	85
Abbildung 3.14:	Feder-Dämpfer-Modell nach Arruda-Boyce, Vergleich zwischen experimentellen und berechneten Daten	86
Abbildung 3.15:	Ideal-plastisches Werkstoffverhalten (li.), linearelastisch – ideal plastische Werkstoffverhalten (re.)	es 87
Abbildung 3.16:	Spannungs-Dehnungsverlauf nach dem Modell der J ₂ -Plastizität ohne Verfestigung (li.) und mit Verfestigung (re.)	90
Abbildung 4.1:	Erweiterter Versuchsaufbau zur Würfeldruckprüfung	96
Abbildung 4.2:	Prüfprogramm der Würfel-Druckprüfungen	98
Abbildung 4.3:	Druckspannungs-Stauchungsdiagramme der Würfeldruckversuche PE HWU (I.o.), PE UHMW (r.o.), PP DWU (I.u.), PA12 (r.u.)	98
Abbildung 4.4:	Plastische Stauchung und E-Modul in Abhängigkeit der techn. Druckspannung	99
Abbildung 4.5:	Ergebnisse der Flächenmessung während der Würfeldruckversuche	100
Abbildung 4.6:	Druckspannungs-Stauchungsdiagramme der Würfeldruckversuche PE HWU (I.o.), PE UHMW (r.o.), PP DWU (I.u.), PA12 (r.u.)	101
Abbildung 4.7:	Plastische Stauchung und E-Modul in Abhängigkeit der wahren Druckspannung	103
Abbildung 4.8:	Versuchsaufbau zur Bestimmung des belastungsabhängigen Reibbeiwerts	105

Abbildung 4.9:	Kraft- und Wegmesswerte während einer Prüfung zur Bestimmung der Reibkraft	107
Abbildung 4.10:	Ergebnisse der Versuche zur Bestimmung der Reibbeiwerte	108
Abbildung 4.11:	Dünnschicht-Mikroskopie an zwei Reibkörpern aus PE UHMW	109
Abbildung 4.12:	Anteil der plastischen Stauchung in Abhängigkeit der Gesamtstauchung senkrecht zur Plattenebene	113
Abbildung 4.13:	Graphen der Regressionsfunktionen	114
Abbildung 4.14:	Wertepaare der plastischen Stauchung und der davon abhängigen Steifigkeitsmoduln	116
Abbildung 4.15:	Eingangswerte und Ausgleichsfunktion des abhängigen E-Moduls von PE-HWU	117
Abbildung 4.16:	Ausgleichsfunktionen der E-Moduln der betrachteten Kunststoffe	118
Abbildung 5.1:	Ansatzfunktion für ein rechteckiges Scheibenelement	124
Abbildung 5.2:	Inkrementelle Lösung nach der Newton-Raphson-Methode	127
Abbildung 5.3:	diskretisiertes FE-Modell der Würfeldruckprüfung	130
Abbildung 5.4:	Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation	131
Abbildung 5.5:	Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation	133
Abbildung 5.6:	Aufbau der Lasteinleitungselemente zur Druckprüfung an kreisförmigen Prüfkörpern	135
Abbildung 5.7:	Modell und Berechnungsergebnis einer Prüfung an dem Kunststoff PE UHMW	136
Abbildung 5.8:	Druckspannungs-Stauchungsverlauf als Ergebnis der Druckprüfung am Kunststoff PE UHMW	137
Abbildung 5.9:	Vergleich der Ergebnisse aus der FE-Simulation und der Druckprüfung am Beispiel des Kunststoffs PE UHMW	138
Abbildung 5.10:	FE-Modell eines Rohrpaars DN800 zur Bestimmung der Beanspruchung unter Vortriebsbedingungen	140
Abbildung 5.11:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN400 und einem Druckübertragungsring aus Spanplatte	142
Abbildung 5.12:	Verlauf der Druckspannungen in der Rohrfuge beim Rohr DN400 und DÜR aus Spanplatte in 3D-Ansicht (li.) und 2D-Verlauf über die Querschnittshöhe z_k (re.)	143
Abbildung 5.13:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN400 und einem Druckübertragungsring aus PE HWU	144
Abbildung 5.14:	Verlauf der Druckspannungen in der Rohrfuge beim Rohr DN400 und DÜR aus PE HWU in 3D-Ansicht (li.) und 2D-Verlauf über der Querschnittshöhe z_k (re.)	145
Abbildung 5.15:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN400 und einem Druckübertragungsring aus PE UHMW	146
Abbildung 5.16:	Verlauf der Druckspannungen in der Rohrfuge beim Rohr DN400 und DÜR aus PE UHMW in 3D-Ansicht (li.) und 2D-Verlauf über die Querschnittshöhe z_k (re.)	146

Abbildung 5.17:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN400 und einem Druckübertragungsring aus PA12	147
Abbildung 5.18:	Verlauf der Druckspannungen in der Rohrfuge beim Rohr DN400 und DÜR aus PA12 in 3D-Ansicht (li.) und 2D-Verlauf über die Querschnittshöhe $z_{\rm k}$ (re.)	148
Abbildung 5.19:	Fugengeometrie bei einem Rohr DN400 (li.) und DN800 (re.)	149
Abbildung 5.20:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus Spanplatte	149
Abbildung 5.21:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PE UHMW	150
Abbildung 5.22:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PA12	151
Abbildung 5.23:	Maximale Zugspannung am Rohrspiegel in Abhängigkeit des Außen- und Innendurchmessers für die Laststufe 50N/mm ² und die Dicken 5mm, 7,5mm, 10mm, 12,5mm und 15mm	154
Abbildung 5.24:	Maximale Zugspannung am Rohrspiegel in Abhängigkeit der Breite und der Dicke des DÜR	156
Abbildung 5.25:	Druckspannungs-Stauchungsdiagramm für einen 5mm dicken Druckübertragungsring	158
Abbildung 5.26:	Gewichtete, rechnerisch zulässige Vorpresskraft	159
Abbildung 5.27:	Schadensbild bei der Verwendung von Druckübertragungsringen mit tangential orientierten konzentrischen Nuten	161
Abbildung 5.28:	Modifizierter Querschnitt mit Fasen auf der Innen- und Außenseite	161
Abbildung 6.1:	Großversuchsstand am ibb	167
Abbildung 6.2:	Belastungs- und Auslenkungsprogramm bei den Versuchen im Großversuchsstand	168
Abbildung 6.3:	DMS-Rosetten mit zwei und drei gekreuzten DMS	169
Abbildung 6.4:	Anordnung der DMS-Messstellen am unteren Vortriebsrohr	170
Abbildung 6.5:	Ergebnisse der DMS-Messung mit einem konventionellen DÜR aus Spanplatte	171
Abbildung 6.6:	Ergebnisse der DMS-Messung mit DÜR aus PE UHMW und optimierter Geometrie	172
Abbildung 6.7:	Vergleich der Ergebnisse der DMS-Messung (MW) mit den Ergebnissen der FE-Berechnung (RW) für einen DÜR aus PE UHMW und optimierter Geometrie	173
Abbilduna 6.8:	Versuchsaufbau in der Versuchsbahn	175
Abbildung 6.9:	Hintere Rohrfuge des Messrohrs mit Druckübertragungsring aus PE UHMW und Fugenspaltmesstechnik	176
Abbildung 6.10:	Ergebnisse der Positionserfassung und der Abwinkelungs- messung beim ersten Erprobungsvortrieb	178
Abbildung 6.11:	Beschädigungen an Vortriebsrohren mit Druckübertragungsrings aus Spanplatte	179
Abbildung 6.12:	Abplatzung am Messrohr (re.) und Radialriss am vorausgehenden Rohr (li.)	180

Abbildung 7.1:	Abhängigkeit der maximalen Druckspannung von der Zugspannung für einen DÜR aus PE UHMW und rechteckigem Querschnitt (li.) sowie fasenoptimierten Querschnitt (re.)	184
Abbildung 7.2:	Werkstoffkennwert E _{cal,lin} für einen DÜR aus PE UHMW mit rechteckigem Querschnitt	185
Abbildung 10.1:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation	der
	für den Kunststoff PE HWU	205
Abbildung 10.2:	Wahre Druckspannung über technischer Stauchung zum Vergleich der Ergebnisse aus der Würfeldruckprüfung und derFE-Simulation für den Kunststoff PE HWU	206
Abbildung 10.3:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff BE LIMMW	der
Abbildung 10.4:	Wahre Druckspannung über technischer Stauchung zum Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PE UHMW	200
Abbildung 10.5:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PP DWU	der 207
Abbildung 10.6:	Wahre Druckspannung über technischer Stauchung zum Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PP DWU	208
Abbildung 10.7:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PP DWU	der 208
Abbildung 10.8:	Wahre Druckspannung über technischer Stauchung zum Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PP DWU	209
Abbildung 10.9:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Kreisdruckprüfung und der FE-Simulation für den Kunststoff PE HWU	der 210
Abbildung 10.10:	Technische Druckspannung über technischer Stauchung zum Vergleich Ergebnisse aus der Kreisdruckprüfung und der FE-Simulation	der
Abbilduna 10.11:	Technische Druckspannung über technischer Stauchung zum Vergleich	der
Ū	Ergebnisse aus der Kreisdruckprüfung und der FE-Simulation für den Kunststoff PP DWU	211
Abbildung 10.12:	Wahre Druckspannung über technischer Stauchung zum Vergleich der Ergebnisse aus der Würfeldruckprüfung und der FE-Simulation für den Kunststoff PA12	211
Abbildung 10.13:	Verteilung der Druck- und Zug-Hauptspannungen bei einem Rohr DN400 und einem Druckübertragungsring aus PP DWU	212
Abbildung 10.14:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus Spanplatte	212
Abbildung 10.15:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PE HWU	213

Abbildung 10.16:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PE UHMW	213
Abbildung 10.17:	Verteilung der Druck- und Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PP DWU	213
Abbildung 10.18:	Verteilung der Druck- und der Zug-Hauptspannungen bei einem Rohr DN800 und einem Druckübertragungsring aus PA12	214
Abbildung 10.19:	Ergebnisse der DMS-Messung mit DÜR aus PE UHMW und rechteckiger Geometrie	214

Tabellenverzeichnis

Tabelle 2.1:	Zulässige Abweichung von der Rechtwinkligkeit in [mm]	18
Tabelle 2.2:	Wesentliche physikalische Eigenschaften von Steinzeugrohren	21
Tabelle 2.3:	Einwirkungen auf Vortriebsrohre	24
Tabelle 2.4:	Durchschnittlicher Eindringwiderstand P _E in Abhängigkeit verschiedener Böde	en 26
Tabelle 2.5:	Vergleich der bislang erzielten und der maximal möglichen Haltungslängen	58
Tabelle 4.1:	Herstellerangaben zu den mechanische Eigenschaften der geprüften Kunststoffe	95
Tabelle 4.2:	Druckübertragungsfläche A_{gem} und Verhältnis A_{gem}/A_0 auf der Laststufe 100N/	mm² 101
Tabelle 4.3:	Wahre Fließdruckspannung und Fließstauchung	102
Tabelle 4.4:	Haftreibungsbeiwert der ersten beiden Laststufen für den Werkstoff PE HWU	108
Tabelle 4.5:	Ergebnisse der Regressionsanalyse	114
Tabelle 4.6:	Regressionskoeffizienten	117
Tabelle 4.7:	Ausgleichsfunktionen für die abhängigen E-Moduln der betrachteten Kunststoffe	118
Tabelle 5.1:	Wesentliche Eingangswerte für die FE-Berechnungen	139
Tabelle 5.2:	Variationsparameter für die Parameterstudie	153
Tabelle 5.3:	Günstigste geometrische Eigenschaften eines Druckübertragungsrings aus PE UHMW für ein Steinzeug-Vortriebsrohr DN400	159
Tabelle 5.4:	Günstigste geometrische Eigenschaften eines Druckübertragungsrings aus PE UHMW für ein Steinzeug-Vortriebsrohr DN400	163
Tabelle 7.1:	Bestimmung der plastischen und elastischen Stauchungsanteile sowie des E-Moduls in Abhängigkeit der Laststufe für einen Druckübertragungsring PE UHMW und rechteckigem Querschnitt	g aus 185

Verwendete Abkürzungen und Formelzeichen:

Abkürzung	Bezeichnung
AB	Arruda-Boyce
DMS	Dehnungsmessstreifen
DÜR	Druckübertragungsring
DWA	Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.
FE, FEM	Finite Elemente, Finite Elemente Methode
GFK	Glasfaserverstärkter Kunststoff
HDD	Horizontal Directional Drilling, (engl. Horizontalspülbohrverfahren)
OSB	Oriented Strand Board
PA	Polyamid
PE	Polyethylen
PE HWU	Polyethylen mit hohem Molekulargewicht
PE UHMW	Polyethylen mit ultrahohem Molekulargewicht
PET	Polyethylenterephthalat
PP	Polypropylen
PU, PUR	Polyurethan
PVC	Polyvinylchlorid
SBR	Styrol-Butadien-Kautschuk
TPE	thermoplastisches Elastomer
UP-GF	Glasfaserverbundkunststoff für Vortriebsrohre

Formelzeichen	Einheit	Bezeichnung
μ	[-]	Haftreibungskoeffizient
μ _H	[-]	Haftreibungsbeiwert
μн,і	[-]	Haftreibungsbeiwert der i-ten Laststufe
а	[mm]	Anteil der Höhe der Druckkraft übertragenden Fläche abzüglich des halben Außendurchmessers
A	[mm²]	Kleinste Druckübertragungsfläche Fläche des maßgebenden Rohrquerschnitts
a ₀	[mm]	Ausgangsdicke der Zwischenlage
A ₀	[mm²]	Ausgangsfläche

A _{gem}	[mm²]	Größte gemessene Druckübertragungsfläche
B(z)	[mm]	Querschnittsbreite
b _a	[mm]	Breite der äußeren Fase
b _i	[mm]	Breite der inneren Fase
d ₃	[mm]	Geringster Außendurchmesser des Rohres
d _a	[mm]	Außendurchmesser
d _{a,min}	[mm]	minimaler Rohraußendurchmesser am Spitzende
d _i	[mm]	Innendurchmesser
di	[mm]	Größter Innendurchmesser
D _k		Differentialoperator
E	[N/mm²]	E-Modul
- ()	[kp/cm ²]	
E(p)	[N/mm ²]	E(p)-Modul
E(ε _{pl,D})	[N/mm²]	Abhängiger Steifigkeitsmodul
E _{0,i}	[N/mm²]	Sekantenmodul der i-ten Laststufe
Ec	[N/mm²]	Elastizitätsmodul aus dem Druckversuch
E _{cal}	[N/mm²]	Rechenwert der Steifigkeit des Druckübertragungsrings
E _{cal,lin}	[N/mm²]	Von der Vorbelastung abhängiger E-Modul
E _{DÜR}	[N/mm²]	Von der Druckspannung abhängiger E-Modul des Druckübertragungsrings
E _{DÜR,i}	[N/mm²]	Von der i-ten Laststufe abhängiger E-Modul des Druckübertragungsrings
E _H	[N/mm²]	Elastizitätsmodul des Holzrings
Ei	[N/m]	Steifigkeit der i-ten Feder
E _{ijkl}	[-]	Elastizitätstensor
E _{P,20(a0)}	[N/mm²]	Druck-E-Modul der 20. Laststufe
E _R	[N/mm²]	Elastizitätsmodul des Rohres
E _{R,ax}	[N/mm²]	einaxialer Druck-E-Modul des Rohrwerkstoffes
Ε ^τ	[N/mm²]	Verfestigungsmodul
f _d	[N/mm²]	Bemessungswert der Druckfestigkeit des Rohrwerkstoffes
F _{H,i}	[kN]	Lokaler Maximalwert der seitlich wirkenden Kraft
Fj	[kN]	Zulässige Vorpresskraft
F _{j,schätz}	[kN]	Schätzwert der zulässigen Vorpresskraft
f _k	[N/mm²]	charakteristische Druckfestigkeit des Rohrwerkstoffs
F _{N,i}	[kN]	Normalkraft der i-ten Laststufe

f _{t,d}	[N/mm²]	Bemessungswert der Zugfestigkeit
f _{tm}	[N/mm²]	mittlere Zugfestigkeit des Rohrwerkstoffs
G	[N/mm²]	Schub- oder Gleitmodul
J _{1,2,3}	[-]	1., 2. und 3. Invariante des Spannungsdeviators
K _g		Gesamtsteifigkeitsmatrix
	[m]	Länge der Vortriebsrohre
L _R	[m]	Länge des Einzelrohres
max σ	[N/mm²]	Maximale Druckspannung in der Rohrfuge
$\frac{\max \sigma}{\sigma_0}$	[-]	Spannungsquotient
р	[-]	Exponent des E(p)-Moduls
р		Vektor der äußeren Kräfte im Bereich B
P _A	kN	Andrückkraft
P _B	kN	Brustwiderstand
P _E	kN/m²	Eindringwiderstand
PL	[kN]	In Längsrichtung orientierter Kraftanteil in der Fuge
Pq	[kN]	In Querrichtung orientierter Kraftanteil in der Fuge
Ps	kN	Schneidenwiderstand
P _{St}	kN	Stützkraft
R	[m]	Halbmesser der Gradiente (Radius der Steuerung)
R _M	kN/m²	Mantelreibung
R _{plan}	[m]	Planmäßiger Krümmungsradius der Trasse
s	[mm]	Rohrwandstärke
Sd	[mm]	Dicke des Druckübertragungsrings
t _{DÜR}	[mm]	Breite des Druckübertragungsrings
t _{Rohr}	[mm]	Breite des Rohrquerschnitts an der maßgebenden Stelle
u		Allgemeiner Verschiebungsvektor
V	[kN]	Vortriebskraft
v		Knotenverschiebungsvektor
z	[mm]	Höhe der Druckkraft übertragenden Fläche
z/d _a	[-]	Fugenklaffungsmaß
z _k	mm	Höhe der Druckkraft übertragenden Fläche
z _k	[mm]	Höhe der Druckkraft übertragenden Fläche

z _k /d _{a,min}	[-]	Fugenklaffungsmaß
zul V	[kN]	Zulässige Vorpresskraft
∆ a ₂₀	[mm]	Verformung der Zwischenlage nach 20 Verformungszyklen
Δa_{cal}	[mm]	maximale Abweichung der Rohrstirnflächen von der Rechtwinkligkeit zur Rohrachse in einer Rohrfuge
Δs_b	[mm]	Höhe der Fase
$\Delta s_{DÜR}$	[mm]	Verformung des Druckübertragungsrings
Δs_R	[mm]	Verformung des Rohrs
$\Delta \epsilon(\sigma_{max})$	[-]	Elastischer Verformungsanteil bei Grenzspannung
δε		Vektor der virtuellen Verzerrungen im Bereich B
δ u		Vektor der virtuellen Verschiebungen im Bereich B
δ u _R		Vektor der virtuellen Verschiebungen auf dem Rand R des Bereichs B
δWa		virtuelle Arbeit der äußeren Kräfte
δΠ _i		virtuelle Formänderungsenergie
α	[°]	Kegelwinkel
α _{D,T}	[-]	Abminderungsfaktor
β _{LD}	[N/mm²]	Druckfestigkeit des Rohrwerkstoffes nach DIN 1045
з	[-]	Verzerrung, Stauchung, technische Stauchung
ε _{cB}	[-]	Nominelle Stauchung bei Bruch
ε _{cM}	[-]	Nominelle Stauchung bei Druckfestigkeit
ε _{cy}	[-]	Nominelle Fließstauchung
ε _{el}	[-]	Elastische Stauchung
€ _{ges}	[-]	Gesamtstauchung
ε _H	[-]	Stauchung in Belastungsrichtung infolge der hydrostatischen Spannungs- anteile
ε _{max,i}	[-]	Maximale Stauchung der i-ten Laststufe
ε _{pl}	[-]	Plastische Stauchung
ε _{pl,D}	[-]	Plastische Stauchung
ε _{pl,i}	[-]	Plastische Stauchung der i-ten Laststufe
ετ	[-]	Materialkennwert für den 2-Parameteransatz
γ	[-]	Sicherheitsbeiwert
γf	[-]	Teilsicherheitsbeiwert für Einwirkungen
φ _{ges}	[°]	Rechn. zu berücksichtigende, resultierende Abwinkelung in der Rohrfuge

[°]	Rohrabwinkelung zur Berücksichtigung unplanmäßiger Abweichungen der Vortriebsmaschine von der Sollachse (Steuerbewegungen)
[°/m]	Rechenwert zur Ermittlung der Rohrabwinkelung aus unplanmäßiger Abweichungen der Vortriebsmaschine von der Sollachse
[°]	Rohrabwinkelung zur Berücksichtigung von Abweichungen der Rohrspiegel von der Rechtwinkligkeit zur Rohrachse (Fertigungstoleranzen)
[-]	Verformungsfaktor
[-]	Beiwert
[-]	Lame sche Konstante
[N/(m*s)]	Viskosität des i-ten Dämpfers
[-]	Lame´sche Konstante
[-]	Haftreibungskoeffizient
[-]	Haftreibungsbeiwert
[-]	Haftreibungsbeiwert der i-ten Laststufe
[-]	Querkontraktionszahl
[-]	Kombinationsbeiwert
	Formfunktionen
[N/mm²]	Spannung, Druckspannung
	Schnittkraftvektor
[N/mm²]	Druckspannung bei gleichmäßig verteilter Vortriebskraft
[N/mm²]	Bruchfestigkeit
[N/mm²]	Wahre Druckspannung der i-ten Laststufe
[N/mm²]	Technische Druckspannung der i-ten Laststufe
	Hydrostatischer Anteil der Spannung
[N/mm²]	Druckfestigkeit
[N/mm²]	Grenzspannung
	Vektor der Randkräfte
[N/mm²]	Materialkennwert für den 2-Parameteransatz
[N/mm²]	Wahre Druckspannung
[N/mm²]	Druckfließspannung
	[°/m] [°/m] [°/m] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-