Das Verhalten von Gusseisenwerkstoffen bei TMF und TMF/HCF-Beanspruchung

Zur Erlangung des akademischen Grades **Doktor der Ingenieurwissenschaften**der Fakultät für Maschinenbau

Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Ing. Andreas Uihlein

Tag der mündlichen Prüfung: 12. Juli 2010

Hauptreferent: Prof. Dr.-Ing. D. Löhe

Korreferent: Prof. Dr.-Ing. T. Beck

Schriftenreihe Werkstoffwissenschaft und Werkstofftechnik

Band 69/2011

Andreas Uihlein

Das Verhalten von Gusseisenwerkstoffen bei TMF und TMF/HCF-Beanspruchung

Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2010

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-9832-6 ISSN 1439-4790

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Wie bereits Aristoteles erkannte ist das Ganze oftmals mehr als die Summe seiner Einzelteile. Ähnlich verhält es sich auch mit diesem vorliegenden Manuskript, welches für mich mehr darstellt als die Abhandlung einer wissenschaftlichen Arbeit. Vielmehr ist diese Arbeit das Produkt einer wunderbaren und lehrreichen Zeit am Institut für Werkstoffkunde I an der Universität Karlsruhe, wo ich die Gelegenheit hatte, viele interessante und liebenswerte Menschen kennen zu lernen, von denen manche sogar zu meinen besten Freunden wurden.

In diesem Sinne möchte ich es mir an dieser Stelle nicht nehmen lassen diesen Menschen diese ersten Seiten zu widmen, da ein Gelingen dieser Arbeit ohne sie nicht möglich gewesen wäre.

Herrn Prof. Dr.-Ing. Löhe danke ich sehr herzlich für die Ermöglichung der Durchführung dieser Arbeit und die vielen kritischen Anmerkungen. Insbesondere möchte ich ihm dafür danken, dass er trotz seiner neuerlichen Tätigkeiten im Präsidium des KIT das Hauptreferat übernommen hat.

Mein ganz persönlicher Dank gilt Herrn Dr. Lang für die zahlreichen Diskussionen, sein enormes fachliches Repertoire, aus welchem ich stets schöpfen durfte, die Durchsicht dieser Arbeit aber auch für das mir entgegengebrachte Vertrauen, sowie die fantastische Zeit im SLK-Team.

Ebenfalls möchte ich mich bei Herrn Prof. Dr.-Ing. Beck für die Übernahme des Korreferates, für die vielen Anregungen während seiner Zeit am IWK I sowie für die zahlreichen Laufrunden und Brückensprints bedanken.

Insbesondere den Kollegen vom "alten SLK im Fasanengarten" sowie vom "neuen Gebäude 10.96" möchte ich für die fantastische Zeit danken. Besonders zu erwähnen sind hierbei Klaus Rau sowie meine Zimmerkollegen Ingo Henne und Pablo Barreiro, denen ich für die vielen neuen Ein- und Ausdrücke danke. Dem Technikerteam bestehend aus Marc Brecht, Arndt Hermeneit, Ralf Rössler, Sebastian Höhne und Peter Kretzler möchte ich für die einzigartige Unterstützung ausdrücklich danken.

Ebenso haben meine Diplom- und Studienarbeiter Thilo Hammers und Ansgar Harnischmacher einen wesentlichen Beitrag zu dieser Arbeit geliefert wofür ich mich herzlich bedanken möchte.

Den Mitarbeitern aus der Werkstatt, der Metallographie und des Sekretariats sowie insbesondere Ursula Holtfester danke ich für die stetige Unterstützung.

Letztendlich gilt es jedoch, mich bei den Menschen zu bedanken, welche mich am meisten über die Jahre hinweg unterstützt haben. Hierbei möchte ich meiner Familie und insbesondere meinen Eltern für den Rückhalt und die motivierenden Worte sowie die physische und psychische Unterstützung danken. Zum Schluss jedoch danke ich meiner Partnerin Nicole für die Hilfe bei der Korrektur dieser

Arbeit, für Ihre Liebe, ihre motivierende, inspirierende und meinen Frust ertragenden Art, ihrem Lachen, sowie ihrem liebenswerten Wesen, welches mir immer wieder neuen Schub verliehen hat. Ich hoffe, dass ich gerade diese zuletzt genannten Menschen durch diese Arbeit mit etwas Stolz beglücken und Ihnen somit ein klein wenig von dem Gegebenen zurück geben kann.

Inhaltsverzeichnis

1	EIN	NLEITUNG	5
2	KE	NNTNISSTAND	7
			_
2.1		ügemorphologie	
2	.1.1	Metallkundliche Grundlagen	/
2.2	The	rmisch aktivierte Verformungsprozesse	9
	.2.1	Temperatur- und Dehnratenabhängigkeit der Fließspannung	
2	.2.2	Kriechverhalten	11
2	.2.3	Spannungsrelaxation	13
2	.2.4	Dynamische Reckalterung	14
2.3	Stat	isches und Quasistatisches Verformungsverhalten von Gusseisenwerkstoffen	17
	.3.1	Festigkeits- und Zähigkeitskennwerte	
2	.3.2	Verformung im elastischen Bereich	
	.3.3	Plastische Verformung und Verfestigung	
24	Frm	üdung	26
	.4.1	Isotherme Ermüdung	
	.4.2	Thermisch-mechanische Ermüdung	
	.4.3	Wechselverformung von Gusseisenwerkstoffen unter thermischer- und	
_		thermisch-mechanischer Wechselbeanspruchung	38
2	.4.4	Lebensdauerverhalten unter thermisch-mechanischer Beanspruchung	
_	.4.5	Thermisch mechanische Ermüdung mit überlagerter HCF-Beanspruchung	
3	WI	ERKSTOFFE UND PROBENGEOMETRIE	46
3.1	Ver	suchswerkstoffe	46
3.2	Pro	bengeometrie	49
4	VE	RSUCHSEINRICHTUNG UND -DURCHFÜHRUNG	50
4.1	Här	temessungen	50
4.2	Dila	tometerversuche	50
4.3	Stat	ische und quasistatische Versuche	En
		·	
4.4	Isot	herme Ermüdungsversuche	52
45	The	rmisch-mechanische Frmüdungsversuche	53

4.6 M	1ikrostrukturelle Untersuchungen	58
4.6.1	Lichtmikroskopische Untersuchungen	58
4.6.2	Rasterelektronenmikroskopische Untersuchungen	59
4.6.3	B Untersuchungen zur Schädigungsentwicklung unter TMF- und TMF/HCF-Beanspruchung	59
5 IS	SOTHERME BEANSPRUCHUNG	60
5.1 Q	uasistatische Zug- und Druckversuche	60
5.1.1		
5.1.2	P EN GJV 450	61
5.1.3		
5.1.4	Werkstoffvergleich und Diskussion	62
	elaxationsversuche	
5.2.1		
5.2.2		
5.2.3	=	
5.2.4	Werkstoffvergleich und Diskussion	67
	elaxationsversuche mit überlagerter HCF-Beanspruchung	68
5.3.1		
5.3.2	2 Interpretation und Diskussion	70
	otherme Ermüdungsversuche	
5.4.1	9	
5.4.2		
5.4.3	S Schädigungsparameter	88
6 T	HERMISCH-MECHANISCHE ERMÜDUNGSBEANSPRUCHUNG	93
6.1 EI	N GJS 700	
6.1.1	Versuche ohne Haltezeit bei T _{max}	93
6.1.2	2 Versuche mit Haltezeit bei T _{max}	100
6.1.3	B Diskussion	106
	N GJV 450	
6.2.1	IIIdX	
6.2.2	IIIdX	
6.2.3	B Diskussion	126
	N GJL 250	
6.3.1		
6.3.2	2 Diskussion	140
	Verkstoffvergleich bei thermisch-mechanischer Beanspruchung	
6.4.1	G	
6.4.2		
6.4.3	B Diskussion	147

7]	TMF-VERSUCHE MIT HCF-ÜBERLAGERUNG	149
7.1 E	N GJS 700	149
7.1.	1 Versuche ohne Haltezeit	149
7.1.		
7.1.	3 Schädigungsentwicklung an EN GJS 700	154
7.1.	4 Diskussion	167
7.2 E	N GJV 450	173
7.2.	1 Versuche ohne Haltezeit	173
7.2.	2 Versuche mit Haltezeit	175
7.2.	3 Diskussion	176
7.3 E	N GJL 250	179
7.3.	1 Versuche ohne Haltezeit	179
7.3.	2 Diskussion	181
7.4 V	Nerkstoffvergleich unter TMF/HCF-Beanspruchung	182
	VERGLEICH: ISOTHERME LCF-VERSUCHE - TMF-VERSUCHE	
8.2 L	ebensdauerverhalten	187
8.3 0	Diskussion	190
9 7	ZUSAMMENFASSUNG	192
	sotherme Beanspruchung	
9.1.		
9.1.		
9.1.	3 LCF-Versuche	194
9.2 T	TMF-Versuche	195
9.3 T	MF-Versuche mit HCF-Überlagerung	196
9.4 V	/ergleich: Isotherme LCF-Versuche – TMF-Versuche	197
10	LITERATURVERZEICHNIS	199
11	LEBENSLAUF	210