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Abstract

Distributed and parallel computing are well-established and successful
fields. In both certain levels of standardization have been achieved and
reliable tools are available for software development and deployment.
However, so far hardly any effort has been made, to integrate the two
worlds in a generic way. This is the goal of the work presented here.

This thesis introduces a new model for client-server support for high-
performance computing called HPCS. The model offers a generic ap-
proach to making parallel, high-performance implementations of compute
services accessible to sequential clients in the form of software compo-
nents. It exploits the abstraction provided by parallel data structures
and parallel procedures to allow transparent access from remote clients.
In HPCS parallel data structures are presented as abstract data objects
and parallel procedures as services. Access is provided using standard-
ized client-server interfaces such as the ones specified by the CORBA
standard. This is done in a way that does not require the service pro-
grammer to be concerned with the client-server interface nor the client
programmer with the parallel nature of the service implementation.

Call-persistent data objects and a minimal set of methods for their
manipulation are proposed as a mechanism to work with parallel data
structures that remain on the server between different service calls. A
parallel request handler split into two components, the Multiplezer and
the Dispatcher, provides transparent access to parallel services.

ACS, a concrete implementation of HPCS targeting the parallel pro-
gramming language ALWAN and CORBA implementations is presented.
Thus, ACS enables writing high-performance services in ALWAN which
are translated into executable parallel programs and interfaces that allow
access to the services from CORBA clients.

Sources of overhead are discussed and some measurements are pre-
sented that provide a feeling for the possible behavior of an HPCS appli-
cation. Examples from the fields of volume rendering, signal processing
and computational fluid dynamics demonstrate how ACS is used in ap-
plications.
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Preface/Roadmap

The presentation of our work is divided into five parts:

Introduction The general ideas and motivation for our approach to
client-server support for high-performance computing, are discussed.
We have a brief look at the two technologies, the integration of
which is the goal of this work: distributed and parallel comput-
ing, CORBA and ALWAN in particular. Part I concludes with an
overview of work that is related to ours.

Design and Implementation We introduce an abstract approach to
the integration of high-performance computing and client-server
infrastructure (HPCS), and present ACS, an implementation for
the ALWAN parallel computing system and CORBA. The ACS
server and client programmers’ views are described. Finally, we
discuss the overhead incurred by HPCS and some rough measure-
ments made in the ACS environment to give the reader a general
feeling for the possible behavior of HPCS applications.

Demonstration Applications Three applications using parallel servers
are presented: our main example, a 3D volume rendering applica-
tion from the medical domain (RDVOL), but also a signal pro-
cessing library/application (LIBSIG/IDAHO), and a simple, edu-
cational computational fluid dynamics code (CFD). These appli-
cations were used as test cases for ACS and to demonstrate how it
works.

Future Work and Conclusions We attempt a look at how this work
could be extended, conclude from the presented work the position
and value of our approach and summarize our experience during
the development of ACS.
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Appendix The appendix contains the ALWAN-to-IDL mapping and
the source code (IDL) of the demonstration applications, as well
as source code of the program used for measurements. Raw data
from the timing measurements is also listed.
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