HPCS : Client-Server Support for High
Performance Computing

Inauguraldissertation
Zur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultat
der Universitat Basel

von
Gérald Jean-Pierre Prétot-Eckenstein
aus Le Noirmont, JU

Basel, im Februar 1999

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultit
auf Antrag der Herren

Prof. Dr. Helmar Burkhart
Prof. Dr. Béat Hirsbrunner

Basel, im April 1999

Prof. Dr. S. Schmid, Dekan

Research Reports in Computer Science

Band 5

Gérald Jean-Pierre Prétot

HPCS: Client-Server Support
for High-Performance Computing

Shaker Verlag
Aachen 1999

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Prétot, Gérald Jean-Pierre:
HPCS: Client-Server Supportfor High-Performance Computing/
Gérald Jean-Pierre Prétot. - AlsMs. gedr. - Aachen: Shaker, 1999
(Research Reportsin Computer Science ; Bd. 5)
Zugl.: Basel, Univ., Diss., 1999
ISBN 3-8265-6700-5

Copyright Shaker Verlag 1999

Allrightsreserved. No part of this publication may be reproduced, storedina
retrieval system, ortransmitted, inany form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

PrintedinGermany.

ISBN 3-8265-6700-5
ISSN 1436-6967

Shaker Verlag GmbH ¢ P.O.Box 1290 ¢ D-52013 Aachen
Telefon: 0049/2407/9596-0 « Telefax: 0049/2407/9596 -9
Internet: www.shaker.de « eMail:info@shaker.de

Abstract

Distributed and parallel computing are well-established and successful
fields. In both certain levels of standardization have been achieved and
reliable tools are available for software development and deployment.
However, so far hardly any effort has been made, to integrate the two
worlds in a generic way. This is the goal of the work presented here.

This thesis introduces a new model for client-server support for high-
performance computing called HPCS. The model offers a generic ap-
proach to making parallel, high-performance implementations of compute
services accessible to sequential clients in the form of software compo-
nents. It exploits the abstraction provided by parallel data structures
and parallel procedures to allow transparent access from remote clients.
In HPCS parallel data structures are presented as abstract data objects
and parallel procedures as services. Access is provided using standard-
ized client-server interfaces such as the ones specified by the CORBA
standard. This is done in a way that does not require the service pro-
grammer to be concerned with the client-server interface nor the client
programmer with the parallel nature of the service implementation.

Call-persistent data objects and a minimal set of methods for their
manipulation are proposed as a mechanism to work with parallel data
structures that remain on the server between different service calls. A
parallel request handler split into two components, the Multiplezer and
the Dispatcher, provides transparent access to parallel services.

ACS, a concrete implementation of HPCS targeting the parallel pro-
gramming language ALWAN and CORBA implementations is presented.
Thus, ACS enables writing high-performance services in ALWAN which
are translated into executable parallel programs and interfaces that allow
access to the services from CORBA clients.

Sources of overhead are discussed and some measurements are pre-
sented that provide a feeling for the possible behavior of an HPCS appli-
cation. Examples from the fields of volume rendering, signal processing
and computational fluid dynamics demonstrate how ACS is used in ap-
plications.

I

Preface/Roadmap

The presentation of our work is divided into five parts:

Introduction The general ideas and motivation for our approach to
client-server support for high-performance computing, are discussed.
We have a brief look at the two technologies, the integration of
which is the goal of this work: distributed and parallel comput-
ing, CORBA and ALWAN in particular. Part I concludes with an
overview of work that is related to ours.

Design and Implementation We introduce an abstract approach to
the integration of high-performance computing and client-server
infrastructure (HPCS), and present ACS, an implementation for
the ALWAN parallel computing system and CORBA. The ACS
server and client programmers’ views are described. Finally, we
discuss the overhead incurred by HPCS and some rough measure-
ments made in the ACS environment to give the reader a general
feeling for the possible behavior of HPCS applications.

Demonstration Applications Three applications using parallel servers
are presented: our main example, a 3D volume rendering applica-
tion from the medical domain (RDVOL), but also a signal pro-
cessing library/application (LIBSIG/IDAHO), and a simple, edu-
cational computational fluid dynamics code (CFD). These appli-
cations were used as test cases for ACS and to demonstrate how it
works.

Future Work and Conclusions We attempt a look at how this work
could be extended, conclude from the presented work the position
and value of our approach and summarize our experience during
the development of ACS.

111

Appendix The appendix contains the ALWAN-to-IDL mapping and
the source code (IDL) of the demonstration applications, as well
as source code of the program used for measurements. Raw data
from the timing measurements is also listed.

v

Acknowledgement

I feel grateful to a large number of people who have accompanied and
supported me during my research and while writing this thesis.

First of all T would like to thank my supervisor (and more) Prof. Dr.
Helmar Burkhart for giving me the opportunity to work in this exciting
field, for providing guidance when needed but also the environment and
freedom to pursue my own ideas, which made the work a truly enjoyable
experience. I would also like to thank Prof. Dr. Béat Hirsbrunner for
refereeing the thesis and for his valuable and much appreciated feedback.

A very special thank goes to my family, to my wife, Sandra, and
my son, Sébastien, who both had to suffer through some difficult times,
especially towards the end of my work. Although I must have often been
quite unbearable, they still kept supporting me as only a loving family
can.

My thanks also go to my parents Leny and Francois Prétot and my
brother René, my dear parents in-law, Monique and Heinz Eckenstein
and my brothers in-law, Sacha and Fabian. They provided the net that
sometimes kept me from falling.

Doing this work would not have been half the fun without the valu-
able discussions with my colleagues at the Computer Science Depart-
ment, my family’s dear friend and author of ALWAN, Dr. Guido Héchler,
Dr. Edgar Lederer, the discussions with whom I will miss as much as the
famous chocolate cakes, Robert Frank, who always seemed to be there
and know an answer even for the stupidest questions and who kept the
computers and networks running (most of the time, anyway) and Dr. Bir-
git Westermann, who is the author of the parallel Rdvol code and had
to endure many long discussions about ALWAN, ACS and the amount
of diskspace available on the file server.

Dr. Gonzalo Travieso maintained the ALWAN tools and removed a
number of idiosyncrasies in the code (aka bugs) without which work on
ACS would have been impossible. Kay Ruchti wrote the core of the
parallel CEFD code and was always willing to discuss and give feedback.

Other important sources for feedback were Dr. Niandong Fang, Dr.
Beat Héormann, Dr. Robert Sinclair and Dr. Walter Kuhn. T am also
grateful for Romeo Dumitrescu’s technical support that was always avail-
able when needed.

Last but by no means least of the people at the Computer Science
Department whom I owe, are our former secretary, Regula Kneubiihler
and our current secretary Karin Liesenfeld. The good services and sup-

v

port that they provided are innumerable. I really don’t know how they
put up with us sometimes and still managed to bring color and sunshine
into our offices.

I would like to thank the Swiss Science Foundation and the Swiss
Federal Office of Education and Science for sponsoring parts of this
work! and some of our collaborators in the projects, especially Patrick
Jacques, Jean-Luc Viellé and Chi Ngo Duc of Spacebel Informatique
S.A., Délphine Délavaux of Aérospatiale and Pierrick Beaugendre of the
IRISA.

Grzegorz Mysliwiec worked on the parallel code for the LIBSIG server.

There are a number of people at Hoffmann-La Roche where I contin-
ued to work part time during the full duration of my work on the thesis.
Dr. U. Goetz who very much supported my first steps “going back to
school”.

Prof. Dr. Don Kaiser, Mark Peeters, Dr. Alfred Steinhardt, Nathalie
Legrenzi and Claudia Bohnet, my managers, who were kind enough to
tolerate my part time presence in the office and who provided a work
environment that allowed me to wear more than two hats without going
absolutely crazy.

Much of what is left of my sanity I owe to my dear friends Maja, Tobi
and Patrick of the MMM, with whom I so often enjoyed the pleasures
of music, from which I drew pure energy.

There are so many people whom I have the honor of calling my
friends, who accompanied me through this time and who continue to
be an important part of my life. Any list would be incomplete. Thank
you all!

IProjects: SPP IF 5003-034357 and ESPRIT HPCN project 21029, PACHA

VI

Contents

I Introduction

1 Integrating CS and HPC Computing
1.1 Client-Server Support for High Performance Computing .
1.2 Motivation L Lo

2 Building Blocks
2.1 Client-Server Computing
2.1.1 Whatitisallabout
2.1.2 Tasks of Client-Server Computing Infrastructure .
213 RPCand OODP
214 CORBA
2.2 High-Performance Computing (HPC)
2.2.1 ALWAN - The HPC Approach Used in our Work .

3 Related Work
3.1 Legion
3.2 Mentat.
3.3 Globus
3.4 Condor
3.5 NetSolve
3.6 Ninf e
3.7 RCS
3.8 Sciddle.o
3.9 Nexus
3.10 HPC+H+ e e
3.11 POOMA e
3.12 PARDIS e

11
11
11
13
15
20
23
25

313 PAWS . . . 47

3.14 Cobra 48
3.15 Others 49
IT Design and Implementation 51

4 Design and Implementation of an HPCS Environment 53

4.1 Architecture 54
4.1.1 Multiplexer and Dispatcher 54
4.1.2 Call-Persistent Data 56

4.2 The ACS Implementation 57
4.2.1 Source Code Generation 58
4.2.2 The CORBA Interface 58
4.2.3 The Multiplexer implementation 62
4.2.4 The Dispatcher implementation 62
4.2.5 The call-persistent data implementation 64
426 Tools 66

4.3 Platforms on which ACS is currently implemented 67

5 ACS Programmer’s View 69

5.1 ACS Server Programmer’s View 69
5.1.1 The ALWAN Main Module 69
5.1.2 The Module Body 70
5.1.3 Parallel Services 70
5.1.4 TOPOLOGY parameter list 71
5.1.5 Global Variables 71
5.1.6 Type Templates for Partitioned Types 72
5.1.7 Input/Output 72
5.1.8 Compiling for ACS 73
519 Examples oL 74

5.2 ACS Client Programmer’s View 76
521 ACSServers 76
5.2.2 ACS’s Call-Persistent Data Objects 76
5.2.3 ACS High Performance Services 78
5.2.4 Programming with ACS 79
525 Examples 00 79

6 HPCS Overhead 83

6.1 Suitability Considerations 83
6.2 HPCS vs Standalone Implementation 86
6.3 Measurements o 87
6.4 How the measurements were performed 88
6.5 Results. 90
6.5.1 CORBA and Network 90

6.5.2 ACS-internal overhead 91

6.5.3 Influence of Call-Persistent Data on Performance . 95

III Demonstration Applications 99
7 Sample Applications 101
71 RDVOL 101
7.1.1 Application Architecture 102

7.1.2 RDVOL Execution Structure 104

7.1.3 Timingso 105

7.1.4 Adaption Effort. 108

7.2 IDAHO/LIBSIG, 109
7.2.1 IDAHO Application Structure 110

7.2.2 Execution Structure 110

7.3 CED . . . o e 113
7.3.1 Execution Structure 114

7.3.2 Timings 114

IV Future Work and Conclusions 117
8 Future Work 119
8.1 Possible Improvements and Extensions to ACS 119
8.1.1 Type Mapping 119

8.1.2 Broadcasts and Distribution 121

8.1.3 Bulk Data Transfers 121

8.1.4 Exception Handling 123

8.1.5 Alternatives to Call-Persistent Data 123

8.1.6 Additional Examples 123

81.7 Beyond ACS, 124

8.2 HPCS in ‘Standard’ Parallel Programming Environments 124

IX

9 Conclusion 127

9.1 Overall Conclusions 127
9.2 The ACS Experience 128
V Appendix 131
A ALWAN to IDL Mapping 133
B Measurement Source Code 137
B.1 ALWAN Code: acsTimer.asf. 137
B.2 IDL Code: acsTimer.idl 139
C Demonstration Application IDL Sources 143
C.l rdvoliddl e 143
C.2 Libsigddl 148
C3 cfdidl 151
D Raw Timing Data 153
E Product List 157
Bibliography 159
Index 166

List of Figures

1.1

2.1
2.2
2.3
24
2.5

4.1
4.2

4.3
4.4

6.1
6.2
6.3
6.4

7.1
7.2
7.3
74

8.1

HPCS o 7
Schemaofan RPCecall. 16
Structure of ORB interfaces 22
ALWAN Torus TOPOLOGY Communication 27
ALWAN Data Partitioning 28
ALWAN Local vs. Global View 29
Overview of HPCS Architecture 54

Communication architecture of the main ACS components.
56

ALWAN-to-IDL Example 59
ACS Code Generation 67
ALWAN INPUT vs ACSPut 93
ACS Put with 2 and 6 processors 94
Put: Client vs Server Times 96
Influence of call-persistent data 98

Architecture of the parallel volume rendering application. 103
The RDVOL Java client - displayed in the Netscape browser106
A screen shot of the IDAHO Java client 111
The scfd Java client - displayed in the Netscape browser . 113

ACS Languages and Type Translations 120

XI

XII

List of Tables

2.1 IDL-to-Java Example. 21
4.1 ALWAN components and their IDL translations 60
5.1 files generated by: tiana test.asf -cs 73
6.1 ACSvs standalone ALWAN 86
6.2 Services used for in timing measurements 89
7.1 Schema of a typical RDVOLrun 105
7.2 Overview of RDVOL Service Arguments 107
7.3 RDVOL Times 108
7.4 Execution Structure of an IDAHO 112
7.5 IDAHO service paramters 112
7.6 Schema of a typical CFDrun 114
7.7 Parameters of CFD Services 115
7.8 Measurements for CFD oo, 115
A1 Simple Types« oo e 134
A2 Aggregate Types 134
D.1 acsTimer: C++ client times 154
D.2 acsTimer: Java client times 154
D.3 acsTimer: OrbixWeb Java client times 155
D.4 acsTimer: ACS times, Sun 155
D.5 acsTimer: ACS times for Put, Sun 156
D.6 acsTimer: ACS times, GigaBooster 156
D.7 acsTimer: ACS times for Put, Gigabooster 156

