"Modellierung der Verbundfestigkeit von Hart-Weich-Kombinationen polymerer Werkstoffe"

zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)
der Fakultät für Maschinenbau
der Universität Paderborn

genehmigte DISSERTATION

von
RAINER KLEESCHULTE
aus Kassel

Tag des Kolloquiums:02.03.2011

Referent: Prof. Dr.-Ing. Elmar Moritzer

Koreferent: Prof. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli

Schriftenreihe Institut für Polymere Materialien und Prozesse

Band 3/2011

Rainer Kleeschulte

Modellierung der Verbundfestigkeit von Hart-Weich-Kombinationen polymerer Werkstoffe

D 466 (Diss. Universität Paderborn)

Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Paderborn, Univ., Diss., 2011

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0257-7 ISSN 2191-2025

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Institut für Kunststofftechnik der Universität Paderborn in den Jahren 2005 bis 2010.

Mein Dank gilt Herrn Prof. em. Dr.-Ing. Helmut Potente, dem ehemaligen Leiter des Instituts, für die Chance, unter seiner Anleitung als wissenschaftlicher Mitarbeiter zu arbeiten und mit der Dissertation zu beginnen. Für die Übernahme der Betreuung und die Hilfestellung bei der Fertigstellung danke ich Herrn Prof. Dr.-Ing. Elmar Moritzer

Weiterhin möchte ich mich bei allen aktuellen und ehemaligen Institutsmitarbeitern für das ausgesprochen gute Arbeitsklima bedanken, das sicherlich dazu beigetragen hat, dass diese Arbeit entstanden ist. Vor allem möchte ich mich aber bei meinen studentischen Hilfskräften und den Studienarbeitern bedanken. Durch ihre Arbeit haben sie in erheblichem Maß dazu beigetragen Forschungsergebnisse zu generieren, die die Grundlage dieser Arbeit bilden.

Die Arbeit fasst große Teile des von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e. V. (AiF) geförderten Projektes "Entwicklung von Verfahrensvarianten für das 2-Komponentenspritzgießen" zusammen. Allen Vertretern der Industrieunternehmen die sich im Rahmen des Projektbegleitenden Ausschuss an der Forschungsarbeit beteiligt haben, danke ich herzlichst für die sehr gute Zusammenarbeit. Vor allem möchte ich Herrn Vettkötter als Vertreter des Verbands deutscher Maschinen- und Anlagenbaus (VDMA) für seine engagierte Betreuung und Hilfestellungen danken.

Sämtliche experimentelle Untersuchungen wurden auf einer 2K-Spritzgußmaschine der Firma Ferromatik Milacron Maschinenbau GmbH durchgeführt. Für die Maschine und die hervorragende Zusammenarbeit möchte ich mich bei dem Unternehmen und den Mitarbeitern bedanken.

Zu guter Letzt möchte ich meiner Partnerin Vanessa Heimann danken. Durch ihr fortwährendes Verständnis, ihre tägliche Motivation und ihre uneingeschränkte Hilfsbereitschaft hat sie maßgeblich dazu beigetragen, dass ich dieses Buch fertig stellen konnte.

Inhaltsverzeichnis

1.	. Einleitung 1					
	1.1	Üb	ersicht Mehrkomponentenspritzgießen	1		
	1.2	Sta	and der Technik	4		
	1	1.2.1	Prozessablauf nicht - drehender Werkzeugkonzepte	4		
	1	1.2.2	Prozessablauf drehender Werkzeugkonzepte	ç		
	1	1.2.3	TPE-Werkstoffe	11		
2.	F	Prob	lemstellung und Zielsetzung	15		
3.	ι	Jnte	rsuchte Werkzeugkonzepte	18		
	3.1	Pro	ozessanalyse Core-Back-Werkzeug	18		
	3.2	Pro	ozessanalyse Drehtellerwerkzeug	21		
4.	E	Ехре	erimentelle Untersuchungen	26		
	4.1	Un	tersuchungen an der Zugstabgeometrie	26		
	4	1.1.1	Versuchsaufbau und verwendete Materialien	26		
	4	1.1.2	Einfluss der Schiebertemperierung auf die Verbundfestigkeit	30		
	4	1.1.3	Einfluss der Verfahrensparameter	36		
	4	1.1.4	FEM-Analyse der Spannungszustände beim Zugversuch	40		
	4.2	Un	tersuchungen an der Abschälprobekörpergeometrie	43		
	4	1.2.1	Versuchsaufbau und verwendete Materialien	43		
	4	1.2.2	Einfluss der Verfahrensparameter auf die Verbundfestigkeit unter Verwendung eines geschliffenen Kontureinsatzes	47		
	2	1.2.3	Einfluss der Verfahrensparameter auf die Verbundfestigkeit unter Verwendung beschichteter Kontureinsätze	50		
	2	1.2.4	Einfluss der Verfahrensparameter auf die Verbundfestigkeit unter Verwendung erodiert Kontureinsätze	er 54		
	4	1.2.5	Vergleich der Grenzflächenkonturen	57		
	4	1.2.6	Experimentelle Ergebnisse zur Zeitabhängigkeit der Verbundfestigkeit	58		
5.	(Gren	zflächenanalyse	61		
	5.1	Gre	enzflächenanalyse mittels Raman- und Infrarot-Spektroskopie	61		
	5	5.1.1	Infrarot-Spektroskopie	61		
	5	5.1.2	Raman-Spektroskopie	62		
	5	5.1.3	Ergebnisse der spektroskopischen Untersuchungen	63		
	5.2	Ter	mperaturverlaufsberechnung mittels FDM	67		
	5	5.2.1	Grundlagen zur Berechnung instationärer Wärmeleitvorgänge	68		
	5	5.2.2	Temperaturverlauf im konkreten Anwendungsfall	72		
6.	ı	Mod	ellierungsmethoden zur Beschreibung der Hart-Weich-Kombination	82		
	6.1	Ad	häsionstheorien	82		
	6	3 1 1	Mechanische Adhäsion	82		

Inhaltsverzeichnis

	6.1.2	Spezifische Adhäsion	83	
6	.2 Di	fusionstheorie	85	
	6.2.1	Diffusionskoeffizient und die Fick'schen Gesetze	86	
	6.2.2	Modell auf Basis der Einstein-Gleichung	88	
	6.2.3	Reptationsmodell	89	
6	.3 Di	mensionsanalytik	92	
7.	Fest	igkeitsmodellierung des Hart-Weich-Verbundes	94	
7	.1 Na	chweis der thermodynamischen Verträglichkeit	94	
7	.2 Te	mperatur- und Zeitabhängigkeit des Diffusionskoeffizienten	95	
7	.3 Mc	dellierung der Festigkeit	99	
	7.3.1	Modellierung mittels der Einstein-Beziehung	100	
	7.3.2	Modellierung mittels Reptationsmodell	101	
	7.3.3	Modellierung mittels Dimensionsanalyse	102	
8.	Zusa	ammenfassung / Abstract	107	
9.	Ausblick		109	
10.). Literaturverzeichnis			
11.	1. Anhang			
12.	2. Liste der Vorveröffentlichungen			
13.	. Lebenslauf			

Liste der Formelzeichen und Abkürzungen

Lateinische Buchstaben

A Nullviskosität

ABS Acrylnitril-Butadien-Sytrol

a_{eff} effektive Temperaturleitfähigkeit

a_T Temperaturverschiebungsfaktor

B reziproke Übergangsgeschwindigkeit

b Wärmeeindringzahl

c Steigung

c Wärmekapazität

c Konzentration

c_{1.} c₂ Konstanten (WLF-Ansatz)

d Dicke

D Diffusionskoeffizient

D₀ Selbstdiffusionskoeffizient

DSC Differential Scanning Calorimetry

E Aktivierungsenergie

EPDM Ethylen-Propylen-Dien-Kautschuk

EPM Ethylen-Propylen-Copolymer

F Kraft

FDM Finite-Differenzen-Methode

FEM Finite-Element-Methode

GPC Gel-Permeations-Chromatographie

HDPE Polyethylen hoher Dichte

IR Infrarot

j Materialstrom

k Zeitindex FDM

K₁, K₂,K₃ Regressionsparameter

LCP Liquid Crystal Polymer

M Molmasse

n Ortsindex FDM

N_L Avogadro-Konstante

p_{ND} Nachdruck

PP Polypropylen

PS Polystyrol

 \dot{q} Wärmestromdichte

R universelle Gaskonstante

SB Styrol-Butadien

SEBS Styrol-Ethylen-Butylen-Styrol-Copolymer

t Zeit

T Temperatur

T_G Glasübergangstemperatur

T_{Gr} Grenzflächentemperatur

T_{HS} Temperatur der Hilfsschicht

T_M Massetemperatur

TPE Thermoplastisches Elastomer

t_{prüf} Prüfzeitpunkt

t_r Reptationszeit

t_{RK} Restkühlzeit

T_S Schiebertemperatur

 t_{VZ} Verzögerungszeit

T_{WZ} Werkzeugtemperatur

u Verschiebung

V Volumen

 \overline{V} Molvolumen

VDI27 Erodierstruktur

VDI39 Erodierstruktur

v_{ein} Einspritzgeschwindigkeit

W_{AB} Adhäsionsarbeit

x Raumkoordinate

y Raumkoordinate

z Raumkoordinate

Δt Zeitdifferenz

Δx Schichtdicke FDM

 $\Delta \bar{x}^2$ mittlere Eindringtiefe

Griechische Buchstaben

α Wärmeübergangskoeffizient

β Temperaturverschiebungskoeffizient

 γ_{AB} Grenzflächenspannung

γ Schergeschwindigkeit

ἐ Abzugsgeschwindigkeit

η Viskosität

λ Wärmeleitfähigkeit

ξ Koordinate in Richtung des Einheitsvektors

ρ Dichte

 σ Oberflächenspannung

 σ^d disperser Anteil der Oberflächenspannung

 σ^p polarer Anteil der Oberflächenspannung

σ_{GM,weich} Grundmaterialfestigkeit der Weichkomponente

 σ_V Verbundfestigkeit

 $\zeta_{1,}\,\zeta_{2,}\,\zeta_{3}$ Regressionskonstanten

Φ Quellstärke