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Abstract

Unequal Error Protection (UEP) is the key to future prioritized data communication, multilevel
quality of services (QoSs), and scalable multimedia transmission. This means that these appli-
cations provide data of different importance and require different error protection. Under these
conditions, multicarrier modulation is highly recommended due to its suitability for adapting
individual sub-carriers, which are subject to different channel conditions, with different bit rates,
code rates, and powers according to any given performance constraints.

So far, many channel adaptive bit-loading algorithms in multicarrier systems have been devel-
oped and new coding schemes have dramatically enhanced the system performance. However,
these algorithms treat all sub-carriers equally (non-UEP), i.e., the average error rate will roughly
be the same for all subcarriers. Based on some of these readily available bit-loading algorithms,
we propose a set of new UEP bit-loading schemes that allow for allocating an arbitrary number
of bits with arbitrary noise margins or symbol error-ratios (SERs), thereby realizing UEP at the
modulation level. In these schemes, the subcarriers are subdivided into smaller sets, where each
set is dedicated to a certain priority class. Moreover, we propose different partitioning schemes
that require minimum complexity and overhead.

In general, adaptive transmission techniques require closed-loop communications by using feed-
back links or exploiting channel reciprocity. In this thesis, closed-loop adaptive schemes have
been realized for two different physical single-input single-output (SISO) channels, the wired and
the wireless. In wired systems, the channel transfer function is considered to be deterministic
and, therefore, requires very limited monitoring. However, it suffers from non-stationary impulse
noise. In this case, a robust signal-to-noise ratio (SNR) sorting scheme has been proposed to
better protect the high-priority data. In contrast to the wired channels, the wireless ones are
more susceptible to varying conditions due to mobility. This implicates a study of the feedback
link quality and reliability.

We introduce two different subcarrier allocation methods. The first method is a sub-carrier
partitioning mechanism, where a given set of (sorted) subcarriers are divided amongst different
priority classes in order to preserve certain QoSs. This can be realized, or approximated, using a
set of complex nested iterations. As an alternative to the first method, a multilevel (hierarchical
and non-hierarchical) modulation technique has been introduced to avoid lengthy searching and
sorting.

As an extension to our work, we modify these prioritized adaptation schemes to realize UEP in
multiple-input multiple-output (MIMO) channels as well. Hereto, the spatial and the spectral
information, provided by the channel state information (CSI), will be exploited to realize UEP.
This new prioritized adaptation, combined with the SNR robust sorting, results in a trade-
off between spatial multiplexing and diversity gains in case of CSI uncertainties and different
antenna correlations.

Moreover, we consider bit-loading and channel adaptation techniques for multiuser systems
with different QoS requirements. This has been performed by extending our conventional UEP

approaches to achieve prioritized transmission across a given number of users using orthogonal
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frequency division multiple access (OFDMA), block-diagonalized (BD) space division multiple
access (SDMA), and non-orthogonal SDMA. Using MIMO-OFDMA, we succeed in maximizing
the capacity by utilizing the different users’ eigenchannels and exploiting the multiuser diversity.
One user in a BD-SDMA enjoys the orthogonal projection to the other users’ null-space. Thus,
multiuser interference (MUI) is completely eliminated unless the CSI at the transmitter is incor-
rect. Even then, our UEP adaptive scheme succeeds in protecting the important classes. Finally,
we consider the non-diagonal SDMA, which is the most challenging approach in this thesis.
However, in this case, our prioritized transmission outperforms the multiuser multiple access
technique using minimum mean-square error (MMSE) linear filtering without QoS constraints.
After all, our proposed algorithms succeed in realizing the proposed UEP in wireline and wireless
environments under diverse channel conditions and different link-qualities. Furthermore, we
show that our prioritized transmission schemes exploit limited feedback regimes efficiently,
where they consistently outperform either non-adaptive or adaptive methods with equal error
protection (EEP).
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