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Abstract

The dissertation on hand presents research on NAND flash memories, which are
the most recent of today’s dominant memory technologies. Its market growth fu-
eled the cut of its product cycles to about one year and also led to increasing di-
versity of NAND flash products. Both make the evolutionary research and devel-
opment strategy difficult to handle. Therefore, it is in urgent need to evaluate the
interactions of design and technology as well as the impact of intrinsic variations
and of growing harmful effects on the cells’ stored information as soon as possi-
ble in the development phase of the flash memory system. However, this requires
models for cell - system interaction, which are able to link the physical and electri-
cal properties of the memory transistors with the behavior of the memory system
to support the systematic decision on trade offs.

For this purpose, this work discusses the cell physics of the non-volatile semi-
conductor memory cell as well as its write mechanisms. The direct interaction
between the programming algorithm and physical cell parameters is investigated.
The NAND memory array architecture and its implications on cells’ read and pro-
gram operations are presented. Harmful effects on the stored information are
presented, categorized, analyzed, and for this purpose conceptually separated in
disturb and noise effects. Algorithmic countermeasures for floating gate cross cou-
pling, which was seen as major blocking point for future scaling, are proposed. It
is shown by worst case analysis, that floating gate cross coupling can be efficiently
controlled by algorithmic countermeasures.

Taking other harmful effects into account requires a more general and versa-
tile analysis approach. Therefore a stochastic model for the program operation is
derived and experimentally verified at 48 nm ground rule. The utility and flex-
ibility of this model is demonstrated by discussing the control of cells’ V;, by a
weak programming strategy, and by the optimization of the transistor geometry
for increased V}, control, respectively. This improved control may be used in fu-
ture NAND flash memories to either improve the memory reliability or to increase
the stored data density according to the requirements of the targeted application.

By including more and more of the previously discussed harmful effects into
the model for cell-system interaction, it could mature to a complete NAND memory
simulator. This dissertation demonstrates the feasibility of such an approach and
establishes the theoretical foundations.
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