TECHNISCHE UNIVERSITAT MUNCHEN
Lehrstuhl fiir Baumechanik

ITM-Based FSI-Models for Rooms with Absorptive
Boundaries

Martin Buchschmid

Vollsténdiger Abdruck der von der Fakultét fiir Bauingenieur- und Vermessungswesen der

Technischen Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. K.-U. Bletzinger
Priifer der Dissertation:
1. Univ.-Prof. Dr.-Ing. habil. G. H. Miiller
2. Univ.-Prof. Dr. rer. nat. habil. P. Rentrop

3. Univ.-Prof. Dr.-Ing. H. Grundmann, em.

Die Dissertation wurde am 17.10.2011 bei der Technischen Universitéat Miinchen eingereicht

und durch die Fakultét fiir Bauingenieur- und Vermessungswesen am 13.12.2011 angenom-

men.






Schriftenreihe des Lehrstuhls fiir Baumechanik

Band 8

Martin Buchschmid

ITM-Based FSI-Models for Rooms
with Absorptive Boundaries

Shaker Verlag
Aachen 2012



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Munchen, Techn. Univ., Diss., 2011

Copyright Shaker Verlag 2012

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printedin Germany.

ISBN 978-3-8440-0755-8

ISSN 1864-1806

Shaker Verlag GmbH « P.O.B0OX 101818 « D-52018 Aachen

Phone: 0049/2407/9596-0 « Telefax: 0049/2407/9596-9
Internet: www.shaker.de ¢ e-mail: info@shaker.de



III

Abstract

Models for Fluid Structure Interaction (FSI) in room acoustical calculations are used in many
different fields of engineering like automotive industry or civil engineering. For simulations of
the spatial resolution of the sound field within acoustic cavities very often techniques based

on Finite Element formulations are used.

In order to reduce the number of degrees of freedom and therefore the numerical effort,
a model reduction method, based on a Component Mode Synthesis (CMS), is applied in
this thesis. Macrostructures are assembled out of single substructures applying shape func-
tions at the interfaces. These substructures contain acoustic components like absorbers or
resonators. They are calculated separately in the frame of the CMS approach. The acous-
tic fluid is modeled with the Spectral Finite Element Method (SFEM) and coupled with
plate-like compound absorbers at the interfaces via wavenumber- and frequency-dependent
impedances using Hamilton’s Principle and a Ritz approach, where phase correct coupling
conditions are ensured. The porous foam in the absorber is modeled with the Theory of
Porous Media (TPM) and the impedances are calculated with the help of the Integral Trans-
form Method (ITM).
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Table of Symbols

General
A [m]
w [rad/s]
Q [rad/s]
ks, ky [rad/m]
Z(ky, ky, ) [Ns/(m?)]
U [Nm]
T [Nm]
L [Nm]
c [Nm/s]
Dlehr -]
n” (-]
A-FE -
- D (-]
A-C (]

wavelength

natural circular frequency

circular frequency of excitation

wavenumbers in z- and y-direction

wave impedance

potential energy

kinetic energy

Lagrangian

damping coefficient

damping ratio

damping loss factor

coefficients in the formulation of the absorber
abbreviations in the formulation of the absorber

coefficients in the FSI-formulation

Technical Acoustics/FSI

Pa
Ca
ka
Zo

S o003

[kg/m?]  density of the air (pa=1.204 % at 20°C)
[m/s] speed of sound of the air (ca=343.4" at 20°C)
[rad/m|  wavenumber in the air
[Ns/(m?)] plane wave impedance (Zo = 413.5 2 at 20°C)
-] reflection factor

-] absorption coefficient
-] reflection coefficient
(-]

dissipation coefficient
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@(X

dvg,
dv

Ne

Pa R

[kg/m?]
[kg/m?]
(]

[m]

[m]
/s
[m/s?
[m/s]
/s

o]
[m/s]
[m/s?]

7

[m?]

denotes the constituent « (v = .S for the solid- and
a = G for the gas-phase)

partial volume element of the constituent a
total volume element

domain of the constituent «

volume fraction of the constituent «
macroscopic real density

macroscopic partial density

position vector in the actual configuration
position vector in the reference configuration
function of placements

material time derivative

displacement of the constituent a

velocity of the constituent «

acceleration of the constituent «

seepage velocity between the phases

filter velocity

displacements in the Fourier-domain
velocities in the Fourier-domain
gravitational acceleration

scalar potential for the displacement field

vector potential for the displacement field

X Table of Symbols
A vector of Lagrange multipliers
D, [m?/s]  velocity potential in the acoustic fluid
Vi [m/s] velocity in the acoustic fluid
u, [m] displacement in the acoustic fluid
Da [N/m?  pressure in the acoustic fluid
b, (m?/s]  velocity potential in the Fourier-domain
Va [m/s] velocity in the Fourier-domain
0, [m] displacement in the Fourier-domain
Da [N/m?  pressure in the Fourier-domain
Uy, 2 trial function for the absorber
én(y, z Fourier approximation of v, (y, z)
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XI

kll: k12

Oas Ta

c
S Ms

Ksr
Ksn
I
Sa
YGR
k}G
KG

[m?)
[m?]
[rad/m]
[rad/m]

scalar potential in the Fourier-domain

vector potential in the Fourier-domain
wavenumbers

wavenumbers of the compressional waves
wavenumber of the shear wave

deformation gradient

displacement gradient

right Cauchy-Green deformation tensor

left Cauchy-Green deformation tensor

Green strain tensor

Almansi strain tensor

volumetric strain of the solid component

part of es belonging to the real material

part of es belonging to the change of pores
Piola-Kirchhoff stress tensor of the constituent «
tensor of effective stresses of the constituent «
deviatoric part of the stress tensor
Piola-Kirchhoff  stress tensor in the Fourier-
domain

physical normal and shear stresses

physical stresses in the Fourier-domain

1% macroscopic Lamé constant

2" macroscopic Lamé constant

complex macroscopic Lamé constants

pore pressure

pore pressure in the Fourier-domain

effective stresses of the constituent a

partial hydrostatic stresses of the constituent a
compression modulus of the real solid material
compression modulus of the solid skeleton
interaction forces between the constituents
permeability tensor

effective fluid weight

Darcy flow coefficient

specific permeability /conventional saturated per-

meability



XII Table of Symbols
K* [m?] intrinsic permeability
Ne [Ns/m?]  partial dynamic fluid viscosity
Nen [Ns/m?]  effective dynamic fluid viscosity
= [Ns/m?]  specific flow resistance (1 % =10°2%)
0 K] temperature
R [J/(kgK)] specific gas constant (R = 287.058 for dry air)

Theory of Elasticity

Ons Tu
Ony T
Au

Hou

g/
o]
(m/s]
/7
[m]
/s
[m?]
[m?]
7
(]
[rad/m]
[rad/m]

[rad/m]
(-]
(N/m?]

(N/m?]

density of the elastic material

displacement vector for the elastic material
velocity

acceleration

displacements in the Fourier-domain

velocities in the Fourier-domain

scalar potential for the displacement field

vector potential for the displacement field

scalar potential in the Fourier-domain

vector potential in the Fourier-domain
wavenumbers

wavenumbers of the compressional and the shear
wave

circular wavenumber

Green strain tensor

Piola-Kirchhoff stress tensor for the elastic mate-
rial

Piola-Kirchhoff stress tensor in the Fourier-
domain

physical normal and shear stresses

physical stresses in the Fourier-domain

15t Lamé constant of the elastic material

2 Lamé constant of the elastic material
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Acronyms
BEM Boundary Element Method
BT Biot’s Theory
CMS Component Mode Synthesis
EFEM Energy Finite Element Method
FEM Finite Element Method
FSI Fluid-Structure Interaction
FRF Frequency Response Function
HBEM Hybrid Boundary Element Method
IRF Impulse Response Function
IT™ Integral Transform Method
SFEM Spectral Finite Element Method
SM Spectral Method
TPM Theory of Porous Media



