Sensorvalidierung und Prozessüberwachung in der Abwassertechnik

Dissertation zur Erlangung des akademischen Grades DOKTOR-INGENIEUR

vorgelegt von **Dipl.-Ing. Geritt Kampmann** aus Netphen – Dreis–Tiefenbach

genehmigt vom Department Maschinenbau in der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen

Referent: Univ.-Prof. Dr.-Ing. M. Köhne Korreferent: Univ.-Prof. Dr.-Ing. O. Nelles

Tag der mündlichen Prüfung: 27.01.2012

ZESS-Forschungsberichte

Nr. 30

Geritt Kampmann

Sensorvalidierung und Prozessüberwachung in der Abwassertechnik

Universität Siegen Zentrum für Sensorsysteme Paul-Bonatz-Straße 9-11 57068 Siegen Tel.: 0271 /740-3323 Fax: 0271 /740-2336 e-mail: gs@zess.uni-siegen.de/ Internet: http://www.zess.uni-siegen.de/

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Siegen, Univ., Diss., 2012

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0829-6 ISSN 1433-156X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Zentrum für Sensorsysteme (ZESS) und am Institut für Mechanik und Regelungstechnik – Mechatronik (IMR) der Universität Siegen.

Meinem Doktorvater, Herrn Prof. Dr.-Ing. Manfred Köhne, danke ich für die wertvolle und großzügige Förderung bei der Durchführung dieser Arbeit, seine Diskussionsbereitschaft und vielen Anregungen. Herrn Prof. Dr.-Ing. Oliver Nelles möchte ich nicht nur für das Interesse an meiner Arbeit und die bereitwillige Übernahme des Korreferats danken, sondern auch dafür, dass ich als Mitarbeiter in der Arbeitsgruppe verbleiben konnte, als er die Nachfolge von Prof. Köhne angetreten hat.

Außerdem gilt mein Dank allen Mitarbeitern des Institutes und des Zentrums für Sensorsysteme für die Unterstützung und die gute Zusammenarbeit. Weiterhin möchte ich mich bei allen Studentinnen und Studenten bedanken, die meine Tätigkeit im Rahmen von Studien- und Diplomarbeiten oder als studentische Hilfskräfte unterstützt haben.

Siegen, den 3. Februar 2012

Geritt Kampmann

Inhaltsverzeichnis

A۱	bbildungsverzeichnis	iii
Ta	abellenverzeichnis	v
Fo	ormelzeichen und Symbole	vii
Αl	bkürzungen	xi
Αl	bstract	xiii
1	Einleitung und Problemstellung	1
2	Abwasserreinigungsprozess 2.1 Einführung 2.2 Belebungsverfahren 2.3 Kläranlage Netphen 2.4 Abwasserreinigungsprozess 2.5 Einführung 2.6 Einführung 2.7 Einführung 2.8 Elebungsverfahren 2.9 Elebungsverfahren 2.9 Elebungsverfahren 2.0 Elebungsverfahren 2.0 Elebungsverfahren 2.1 Einführung 2.2 Elebungsverfahren 2.3 Elebungsverfahren 2.4 Elebungsverfahren 2.5 Elebungsverfahren 2.7 Elebungsverfahren 2.8 Elebungsverfahren 2.9 Elebungsverfahren 2.9 Elebungsverfahren 2.1 Elebungsverfahren 2.1 Elebungsverfahren 2.1 Elebungsverfahren 2.2 Elebungsverfahren 2.3 Elebungsverfahren 2.5 Elebungsverfahren 2.6 Elebungsverfahren 2.7 Elebungsverfahren 2.8 Elebungsverfahren	5 6 10
3	Messgrößen und Messgeräte 3.1 Einführung 3.2 Stickstoff 3.2 Stickstoff 3.2.1 Ammoniumstickstoff 3.2.2 Nitratstickstoff 3.2.2 Nitratstickstoff 3.3 Kohlenstoffverbindungen 3.4 Schlammparameter 3.5 Sauerstoff 3.6 Volumenstrom 3.7 Leitfähigkeit 3.8 Redoxpotential 3.9 pH-Wert 3.10 Mehrparameter-Sensoren 3.11 Temperatur 3.11 Temperatur	15 15 17 17 20 22 23 25 27 28 30 31 32 35
4	Prozessregelung 4.1 Beschreibung des Verfahrens 4.2 Einfluss von Sensorfehlern 4.2.1 Störung der Ammoniummessung 4.2.2 Störung der Nitratmessung 4.2.3 Störung der Sauerstoffmessung	37 39 43 44 46 47

5	Ver	ahren zur Fehlererkennung	49		
	5.1	Überblick			
	5.2	Signalbasierte Verfahren	51		
	5.3	Prozessmodellbasierte Verfahren	53		
		5.3.1 Parameterschätzung	55		
		5.3.2 Verfahren basierend auf Paritätsgleichungen	59		
			62		
		5.3.4 Verfahren basierend auf Blackboxmodellen	67		
6	Mo	lellbildung	69		
	6.1	Überblick	69		
	6.2	Blackbox-Modelle	71		
	6.3	Physikalische Modelle	77		
		6.3.1 Modellierung der Nachklärung	79		
			80		
			83		
7	Anv	rendungsbeispiele	87		
	7.1		87		
		7.1.1 Sauerstoffüberwachung mit Hilfe der Kreiseldrehzahl	87		
		7.1.2 Sauerstoff- und Nitratüberwachung mit Hilfe einer Frequenzanalyse	89		
			93		
	7.2	Validierung mit einfachen physikalischen Modellen	94		
		· · ·	94		
			97		
		ŭ	102		
	7.3		103		
8	Zus	ummenfassung und Ausblick 1	.09		
Li	Literaturverzeichnis 111				

Abbildungsverzeichnis

2.1 2.2	$\label{thm:continuous} Verfahrensvarianten der Denitrifikation /ATV97/$
2.3	Untersuchungsphasen auf der Kläranlage Netphen
3.1	Klassifizierung der Messgeräte
3.2	Wichtige Messstellen am Beispiel der Kläranlage Netphen
0.0	becken (BB) und im Ablauf
3.4	Nitratstickstoffkonzentration (NO ₃ -N) im Belebungsbecken über einen Tag mit zyklischen Messstörungen durch Spülvorgänge
3.5	CSB Konzentration im Zulauf und Ablauf während einer Woche mit Regenereignissen am 4. und 6. Tag
3.6	TS-Gehalt im Belebungsbecken und Volumenstom im Ablauf während einer Woche mit Regenereignissen am 4. und 6. Tag
3.7	Messstellen für die Sauerstoffkonzentration
3.8	Sauerstoffkonzentration (O_2) im Belebungsbecken an drei verschiedenen
	Messstellen während einer Woche
3.9	Ammoniumfracht im Zulauf und Volumenstrom $Q \dots $
3.10	Vergleich von Leitfähigkeit und NH ₄ -N-Konzentraton während einer Woche
	Vergleich von Redoxpotential und NH_4 -N-Konzentraton in der Belebung 3 Vergleich von NH_4 -N- und NO_3 -N-Konzentraton sowie pH-Wert in der Be-
5.12	lebung
3.13	Trübungsverlauf während des Absetzvorgangs für mehrere Messungen 3
	Vergleich der Trübungsmessung mit dem Mehrparameter Sensor und einem anderen Inline-Sensor während einer Woche.
3 15	Vergleich der Schlammvolumenmessung mit dem Mehrparameter-Sensor
0.10	und Labormessungen über 2 Wochen
3.16	Vergleich der Nitatstickstoffmessung mit dem Mehrparameter-Sensor, einem
	anderen Inline-Sensor und Labormessungen über einen Tag
4.1	Zulässige Bereiche für Ammonium- und Nitratstickstoff
4.2	Stör-, Stell- und Regelgrößen der Kläranlage
4.3	Bedienoberfläche der Prozessregelung
4.4	Schematischer Verlauf der Sauerstoffkonzentration im Belebungsbecken bei
	Variation des Sauerstoffsollwertes (simultane Denitrifikation)
4.5	Blockschaltbild des Regelkreises
4.6	Fuzzy-Kennfelder für Stark- und Schwachlast
4.7	Regelgrößen und Sollwert bei normaler und starker Belastung 4

	.8 .9	Einfluss von Spül- und Kalibriervorgängen	44
		Tauchbelüfter	45
4	.10	Einfluss der Störung der Nitratmessung	47
		Einfluss der Störung der Sauerstoffmessung	48
	.1	Fehlererkennungsverfahren (analytische Redundanz)	50
5	.2	Schema der residuenbasierten Fehlererkennung / Iser 06/	55
	.3 .4	Schema Fehlererkennung durch Parameterschätzung / Iser 06 / Möglichkeiten zur Berechnung der Residuen $r_A(t)$, $r_G(t)$ bei Übertragungs-	56
		funktionsmodellen /Iser06/	60
	.1	Aufbau eines lokal linearen Modellnetzes	71
6	.2	Nachbildung einer nichtlinearen Funktion durch LOLIMOT mit 4 linearen	
		Modellen	74
	.3	Festlegung der Parameter der Zugehörigkeitsfunktionen	75
	.4	Partitionierung der Prämissenebene mit dem LOLIMOT Verfahren	76
	.5	Schematische Darstellung des Rührkesselmodells	77
6	.6	Unterteilung des Belebungs- und des Nachklärbeckens in einzelne Rührkessel (mit den wichtigsten Messtellen)	78
	.1	Fehlerhafte Messung durch verschmutzte Sauerstoffsonde	88
	.2	Sauerstoffeintragskennlinie	88
	.3	Zunehmendes Rauschen der O_2 -Messung durch Wartungsmangel	90
	.4	Ausschnitte aus der O_2 -Messung mit zugehörigen Frequenzgängen	90
	.5	Detektion einer Messstörung der O_2 -Messung	91
	.6	Detektion einer Messstörung der NO ₃ -Messung	92
7	.7	Nitrat- und Sauerstoffkonzentration im Belebungsbecken und geschätzte	
		Sprungantworten	93
	.8	Fehlererkennung der Nitratmessung durch ein Modell der Nachklärung $$	95
	.9	Störung der Nitratmessung in der Belebung	96
		Fehlererkennung der Ammoniummmessung durch ein Modell der Belebung	97
		Störung der Ammoniummessung im Zulauf, Modellfehler	99
		Störung der Ammoniummessung im Zulauf - Ammoniumabbaurate	100
		Fehlererkennung der Nitratmessung durch ein Modell der Belebung	100
		Störung der Ammonium- und Nitratmessung - Nitratabbaurate	101
7	.15	Fehlererkennung der Ammoniummessung durch ein Modell der Belebung	
		und Nachklärung	102
		Überwachung mit Hilfe des pH-Wertes	105
7	.17	Überwachung mit Hilfe des Redoxpotentials	106

Tabellenverzeichnis

	Daten der Kläranlage Netphen	
	Belebtschlammmodell ASM 1 der IWA	
7.1	Residuen und benötigte Messgeräte	103

Formelzeichen und Symbole

Symbol	Einheit	Bedeutung
A	-	Nennerpolynom (Übertragungsfunktion)
<u>A</u>	-	Dynamikmatrix (Zustandsgleichung)
B	-	Zählerpolynom (Übertragungsfunktion)
<u>B</u>	-	Eingangsmatrix (Zustandsgleichung)
$\frac{B}{b_A}$	1/d	max. spez. Zerfallsgeschw. der autotrophen Biomasse
b_H	1/d	max. spez. Zerfallsgeschw. der heterotrophen Biomasse
BSB_5	mg/l	Biochemischer Sauerstoffbedarf (gemessen über 5 Tage)
B_{TS}	$kg_{BSB5}/(kg_{TS}d)$	Schlammbelastung
c, c_i	-	Konzentration, Konz. im Rührkessel i
$\frac{c_{ij}}{\underline{C}}$	-	Zentren der RBF (Lokales Modellnetz)
<u>C</u>	-	Ausgangsmatrix (Zustandsgleichung)
CSB	mg/l	Chemischer Sauerstoffbedarf, chemische Oxidierbarkeit
d	-	Tage
e(t)	mg/l	Regelabweichung (Sauerstoffregelung), $S_{O,soll} - S_O$
e(t)	-	Modellfehler $y(t) - \hat{y}(t)$
$\frac{F}{f(t)}$	-	Stöchiometriematrix (ASM)
f(t)	-	Fehlervektor
\overline{f}_P	-	Anteil der inerten Zerfallsprodukte an der Biomasse
$G(s), G_M(s)$	-	Übertragungsfunktion, Modellübertragungsfunktion
h	-	Stunden
<u>H</u>	-	Beobachtermatrix
i_{XB}	$g_{ m N}/g_{ m CSB}$	Stickstoffanteil in der Biomasse
i_{XP}	$g_{ m N}/g_{ m CSB}$	Stickstoffanteil i. d. inerten Zerfallsprod. der Biomasse
ISV	$\mathrm{ml/g}$	Schlammvolumenindex: $ISV = SV/TS$
K	-	Verstärkungsfaktor, Proportionalitätsfaktor
<u>K</u>	-	(Kalman-)Filtermatrix
k	-	Zeitindex bei zeitdiskreten Größen
k_{σ}	-	Glättungsfaktor (Lokales Modellnetz)
k_A	$\mathrm{m}^3/(\mathrm{g}\mathrm{d})$	Ammonifikationsrate
k_H	$g_{CSB}/(g_{CSB}d)$	Max. spezifische Hydrolyserate
K_{NH}	$g_{\mathrm{NH_4-N}}/\mathrm{m}^3$	Sättigungsbeiwert des Ammoniumabbaus
K_{NO}	g_{NO_3-N}/m^3	Sättigungsbeiwert der Nitratatmung
K_{OA}	$ m g_{O_2}/m^3$	Sätt.beiwert des Sauerstoffs für die autotr. Biomasse

Symbol	Einheit	Bedeutung
K_{OH}	$\rm g_{O_2}/m^3$	Sätt.beiwert des Sauerstoffs für die heterotr. Biomasse
K_S	g_{CSB}/m^3	Sättigungsbeiwert der schnell abbaubaren Substanzen
K_X	g _{CSB} /g _{CSB}	Sätt.beiwert der Hydrolyse langsam abbaubarer Subst.
\underline{L}	-	Wirkung de Fehler auf die Zustände (Paritätsgleichungen)
LF	S/cm	Leitfähigkeit des Abwassers
M	-	Anzahl lokaler Modelle (Lokales Modellnetz)
\underline{M}	-	Wirkung der Fehler auf die Ausgänge (Paritätsgleichungen)
\dot{m}	-	Massenstrom
min	-	Minuten
N	-	Anzahl Messdatenpunkte
N	-	Matrix des Messrauschens (Zustandsgleichung)
N_{anorg}	mg/l	Stickstoff aus anorg. Verbindungen (NO_x-N+NH_4-N)
N_{org}	mg/l	Stickstoff aus organischen Verbindungen
N_{ges}	mg/l	Gesamtstickstoff $(N_{org}+N_{anorg})$
NH ₄ -N	mg/l	Ammoniumstickstoff (Konzentration)
NO_2 -N	mg/l	Nitritstickstoff (Konzentration)
NO ₃ -N	mg/l	Nitratstickstoff (Konzentration)
NO_x -N	mg/l	Nitrat- und Nitritstickstoff (Konzentration)
p	-	Anzahl Eingänge u_i (Lokales Modellnetz)
p	-	Parametervektor (ASM)
\overline{P}	-	Kovarianzmatriz (RLS)
$\begin{vmatrix} \frac{p}{P} \\ q \\ Q_i \\ \frac{Q}{Q_{ab}} \end{vmatrix}$	-	Anzahl Prämissen z_i (Lokales Modellnetz)
Q_i	-	Gewichtungsmatrix (WLS)
Q	-	Kovarianzmatrix des Systemrauschens (Kalman-Filter)
\overline{Q}_{ab}	$\mathrm{m^3/h}$	Ablaufvolumenstrom Nachklärung
Q_{max}	$\mathrm{m^3/h}$	maximaler Zulaufvolumenstrom
Q_{RS}	$\mathrm{m^3/h}$	Rücklaufschlammvolumenstrom
Q_{RZ}	$\mathrm{m^3/h}$	Rezirkulation
Q_{Tr}	$\mathrm{m^3/h}$	maximaler Trockenwetterabfluss
$Q_{\ddot{U}S}$	m^3/h	Überschussschlammabzug
Q_{zu}	$\mathrm{m^3/h}$	Zulaufvolumenstrom Belebungsbecken
r	-	Residuum, Anzahl Konklusionen x_i (lokales Modellnetz)
R(s)	-	Laplace-Transformierte des Residuums $r(t)$
<u>r</u>	-	Reaktionsratenvektor (ASM), $\underline{r} = \underline{F}(\underline{p}) \cdot \underline{\rho}(\underline{x}, \underline{p})$
<u>R</u>	-	Kovarianzmatrix des Messrauschens (Kalman-Filter)
S	-	Sekunden
s	1/s	Variable der Laplace-Transformation: $s = \sigma + j\omega$
S_{Alk}	$\mathrm{mol/m^3}$	Alkalinität
S_I	mg/l	Konzentration gelöster inerter organische Stoffe
S_{ND}	mg/l	Konzentration gelöster organ. Stickstoffverbindungen
S_{NH}	mg/l	Ammoniumstickstoffkonzentration
S_{N0}	mg/l	Nitrat- und Nitritstickstoffkonzentration

Symbol	Einheit	Bedeutung
S_O	mg/l	Sauerstoffkonzentration (gelöst)
$S_{O,soll}$	mg/l	Sauerstoffsollwert (Sauerstoffregelung)
S_S	mg/l	Konzentration biologisch schnell abbaubarer organ. Stoffe
SV	$\mathrm{ml/l}$	Schlammvolumen
$t, \Delta t$	-	Zeit, Abtastintervall
T	-	Zeitkonstante
T_{Abw}	°C	Abwassertemperatur
t_d	d	Schlammalter, mittlere Aufenthaltszeit der ges. Biomasse
TS	g/l	Trockensubstanzgehalt
TS_{BB}	${ m kg_{BSB5}/m^3}$	Trockensubstanzgehalt im Belebungsbecken
$TS_{\ddot{U}}$	$kg_{BSB5}/(m^3d)$	tägliche Schlammbildung, bezogen auf V_{BB}
u	-	Stellgröße (Kreiseldrehzahl 0 - 100%)
U(s)	-	Laplace-Transformierte der Stellgröße $u(t)$
$u_i, \ \underline{u}$	-	Eingangsgröße(nvektor) (Modell, System)
<u>V</u>	-	Matrix des Systemrauschens (Zustandsgleichung)
V_{BB}	m^3	Volumen des Belebungsbeckens
V_D	m^3	Volumen der Denitrifikation
V_N	m^3	Volumen der Nitrifikation
V_{NK}	m^3	Volumen des Nachklärbeckens
\underline{w}	-	Gewichtsvektor
$x_i \underline{x}$	-	Konklusionen(vektor) (Lokales Modellnetz)
<u>x</u>	-	Zustandsvektor, bzw. Komponentenvektor (ASM)
\hat{x}	-	geschätzter Zustandsvektor (Beobachter, Kalman-Filter)
X, x_i	-	Regressionsmatrix, Regressoren (Parameterschätzung, LS)
X_A	mg/l	Konzentration der aktiven autotrophen Biomasse
X_I	mg/l	Konzentration partikulärer inerter organischer Stoffe
X_H	mg/l	Konzentration der aktiven heterotrophen Biomasse
X_{ND}	mg/l	Konzentration partikulärer organ. Stickstoffverbindungen
X_S	mg/l	Konzentration biologisch langsam abbaubarer organ. Stoffe
X_P	mg/l	Konzentr. der partikulären Zerfallsprodukte der Biomasse
y(t)	-	Ausgangsgröße eines Systems (Messgröße)
Y(s)	-	Laplace-Transformierte der Ausgangsgröße $y(t)$
$\hat{y}(t)$	-	Ausgangsgröße eines Modells (Modellausgang)
$\hat{Y}(s)$	- ,	Laplace-Transformierte des Modellausgangs $\hat{y}(t)$
Y_A	g _{CSB} /g _N	Ertrag der autotrophen Biomasse
Y_H	gcsb/gcsb	Ertrag der heterotrophen Biomasse
z_i, \underline{z}	-	Prämissen(vektor) (Lokales Modellnetz)
griechisch	e Symbole:	
Δ_{ij}	-	Abmessungen der Teilräume (Lokales Modellnetz)
η_g	-	Korrekturfaktor f. d. anox. Atmung der heterotr. Biomasse
η_h	-	Korrekturfaktor f. d. Hydrolyse unter anox. Bedingungen
λ	<u>-</u>	Vergessensfaktor (RLS)

Symbol	Einheit	Bedeutung
μ_i	-	Zugehörigkeitsfunktion (Lokales Modellnetz)
$\hat{\mu}_A$	1/d	max. spez. Wachstumsgeschw. der autotrophen Biomasse
$\hat{\mu}_H$	1/d	max. spez. Wachstumsgeschw. der heterotrophen Biomasse
Φ_i	-	Gültigkeitsfunktion (Lokales Modellnetz)
ρ	mg/(ld)	Reaktionsgeschwindigkeitsvektor (ASM)
σ	-	Realteil der komplexen Frequenz (Laplace Transformation)
σ_{ij}	-	Varianzen der RBF (Lokales Modellnetz)
$\theta, \underline{\theta}$	-	Modellparameter, Parametervektor
ω	-	Imaginärteil der komplexen Frequenz (Laplace Transformation)

Abkürzungen

Abkürzung	Bedeutung	
ASM	Activated Sludge Modell (Belebtschlammmodell)	
EW	Einwohnerwert, EW=EZ+EGW	
EGW	Einwohnergleichwert ($\stackrel{\frown}{=} 60 - 65 g \text{ BSB}_5/(\text{EW} \cdot \text{d})$), Maß für die Schmutz-	
	fracht aus Industrie, Gewerbe, Landwirtschaft etc.	
EZ	Einwohnerzahl	
IMR	Institut für Mechanik und Regelungstechnik, Fachbereich Maschinenbau,	
	Universität Siegen	
KNN	Künstliches Neuronales Netz	
LLM	Lokal Lineares Modell (Lokales Modellnetz)	
LS	Least Squares Verfahren (Fehlerquadratmethode)	
LOLIMOT	Local Linear Model Tree (Verfahren zur Erzeugung	
	lokaler Modellnetze)	
MLP	Multi Layer Perceptron (Neuronaler Netztyp)	
RBF	Radialbasisfunktion	
RLS	Rekursives Least Squares Verfahren	
RVwV	Rahmen-Abwasser-Verwaltungsvorschrift	
SüwV-kom	Selbstüberwachungsverordnung kommunal	
TLS	Total Least Squares Verfahren	
WLS	gewichtetes (weighted) Least Squares Verfahren	
WRLS	gewichtetes (weighted) rekursives Least Squares Verfahren	
ZESS	Zentrum für Sensorsysteme, Universität Siegen	

xii ABKÜRZUNGEN

Abstract

After the governmental reduction of threshold values for several substances in the effluent of wastewater treatment plants in 2001, a large fraction of plants in Germany were no longer able to reach the required purification capacity. In particular, the parameters ammonianitrogen (N₄-N) and total nitrogen (N_{qes}) turned out to be critical.

Performance enhancement in wastewater treatment was usually achieved either by the constructional extension of an existing plant or by replacing it by a new, bigger one altogether. However, these very cost-intensive approaches could often be avoided by applying less expensive control and process engineering methods. This is especially interesting for, but not limited to, smaller municipalities with limited budgets operating their own wastewater treatment plants.

One example for this is the municipal was tewater treatment plant of the town of Netphen in North Rhine-Westfalia, on which the Zentrum für Sensor systeme ZESS of the University of Siegen conducted several research and development projects. Through the use of process and control engineering measures it was possible to improve the performance of the plant enough to adhere to the new threshold values. To a large part this improvement was due to a control strategy featuring a fuzzy-controller for calculating the oxygen concentration setpoint in the aeration tank depending on the current values of the $\rm NH_4-N$ and nitrate-nitrogen (NO₃-N) concentration in that tank.

A disadvantage of this method is the need for measurement devices for the NH₄-N and NO₃-N concentrations, which are usually not present on plants of this size. Moreover, these devices are not as reliable as they should be for the use in a control loop. This thesis therefore examines the possibilities to detect erroneous measurements and sensor faults, thus avoiding the violation of the threshold values these malfunctions could cause.

Several possible methods to achieve such a sensor validation are presented and their suitability for application on a wastewater treatment plant is assessed. The methods are either based on the analysis of the characteristics of a single measurement signal or on a model of the purification process combining several measurements to determine the trustworthiness of the measurements.