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Abstract

In this thesis with the aid of experimental measurements and CFD modelling

validations, the hydrodynamics and mass transfer in the gas-liquid bubble columns,

have been simulated. For this purpose, the commercial CFD-software ANSYS CFX

has been applied.

The experiments have been carried out with a laboratory scale bubble column and

could be divided into two distinct parts; first part, studying the hydrodynamics i.e.

the axial dispersion coefficient and the gas hold-up inside the bubble column with

respect to the different flow rates of gas and liquid phase and the second part, studying

the mass transfer i.e. the volumetric mass transfer coefficient, again with respect to

the different flow rates.

Following the experimental studies, the respective CFD model with the Eulerian-

Eulerian approach and a single sized bubble as the disperse phase was set to simulate

the flow field. For this purpose different closure models such as turbulence and drag

models have been examined and these results were compared with the experimental

data.

Furthermore, a mass transfer model has been developed in order to account for the

mass transfer between the phases. For this part of the simulations, the volumetric mass

transfer coefficients obtained from the experiments, were set into the CFD model for

the numerical calculations. Therefore, the respective experimental flow conditions

were applied in the simulations to validate the CFD model. It was observed that the

hydrostatic pressure inside the bubble column plays an important role in the mass

transfer between the two phases.

Finally, the simulation results show that the Euler model with all its simplifications

is still an appropriate and cost effective approach for the numerical simulation of the

two phase flow in the bubble column reactors.
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List of Abbreviations and Symbols

Abbreviations

ADM axial dispersion model

CFD computational fluid dynamics

C.S. control surface

C.V. control volume

DAAD deutscher akademischer austausch dienst

DNS direct numerical simulation

DO dissolved oxygen

FDM finite difference method

FEM finite element method

FVM finite volume method

ip integration point

LDA laser doppler anemometry

LES large eddy simulation

MUSIG multiple size group

PDE partial differential equation

PIV particle image velocimetry

RANS reynolds averaged navier stokes

SST shear stress transport

UDS upwind difference scheme

VOF volume of fluid



Roman Symbols

Symbol Description Dimensions

A area m2

a gas/liquid interface area per liquid volume m2/m3

Ccd momentum transfer coefficient -

CD drag coefficient -

CL lift coefficient -

CTD modifiable coefficient -

CV M virtual mass coefficient -

c specie concentration kg/m3

D dispersion coefficient m2/s

d diameter m

Fb blending function -

g gravity m/s2

H Henry’s constant m s2/kg

kL mass transfer coefficient m/h

kLa volumetric mass transfer coefficient 1/h

L characteristic length m

lt turbulence length scale m

M interfacial forces kg m/s2

MD interphase drag force kg m/s2

ML lift force kg m/s2

MLUB wall lubrication force kg m/s2

MV M virtual mass force kg m/s2

MTD turbulence dispersion force kg m/s2

ṁ mass flow rate kg /s

N extensive property -

P pressure kg/ms2



Pk shear production of turbulence kg/ms3

Ptot total pressure kg/ms2

R gas constant m3Pa /K mol

rα volume fraction of phase α -

SM momentum sources due to external body forces kg/m2s2

SMS mass sources kg/m3s

t time s

U, u velocity m/s

V volume m3

v kinematic viscosity m2/s

X mole fraction -

x, y, z Cartesian coordinates -

Y mass fraction -

Greek Symbols

Symbol Description Dimensions

ε turbulence eddy dissipation m2/s3

εg gas hold-up -

η intensive property

Γ mass flow rate per unit volume kg/m3s

κ turbulence kinetic energy m2/s2

μ viscosity kg/ms

ρ density kg/m3

σ schmidt number -

τ mean residence time s

τ shear stress kg/ms2



x

Subscripts

α phase α in mixture

β phase β in mixture

c continuous phase

d dispersed phase

eff effective

g gas

ip integration point

i, j unit vectors in coordinate directions

L liquid

P particle

R reactor

t turbulence

W wall

z axial coordinate

Dimensionless numbers

Bo Bodenstein number

Eo Eotvos number

M Morton number

Re Reynolds number

Sc Schmidt number

St Stanton number
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