Methodenentwicklung und -anwendung zur Untersuchung des Misch- und Entgasungsverhaltens in Knetreaktoren

Zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Maschinenbau der Universität Paderborn

vorgelegte DISSERTATION

von

M. Sc. Oliver Seck aus Höxter

Tag des Kolloquiums:	06.09.2011
Referent:	Prof. DrIng. Hans-Joachim Warnecke
Korreferent:	Prof. DrIng. Hans-Joachim Schmid

Schriftenreihe Institut für Polymere Materialien und Prozesse

Band 4/2012

Oliver Seck

Methodenentwicklung und -anwendung zur Untersuchung des Misch- und Entgasungsverhaltens in Knetreaktoren

D 466 (Diss. Universität Paderborn)

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Paderborn, Univ., Diss., 2011

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1021-3 ISSN 2191-2025

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Beim Mischen kommt leicht etwas durcheinander.

Vorwort

Diese Arbeit wurde in der Technischen Chemie und Chemischen Verfahrenstechnik des Instituts für Polymere Materialien und Prozesse angefertigt. Bisher sind folgende Publikationen veröffentlicht worden.

- Seck O., Maxisch T., Bothe D., Warnecke H.-J., "Investigation of the Mixing Behavior and the Generation of Contact-Area in a Continuous Twin-Shaft Kneader"; Kongress: The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Xi'an, China, 11-15 July 2009
 Publiziert in: American Institute of Physics Conference Proceedings, Volume 1207, pp. 105-112 (2010)
- Seck O., Maxisch T., Bothe D., Warnecke H.-J., "Investigation of the Mixing and Devolatilization Behavior in a Twin-Shaft Kneader"; Kongress: Polymer Reaction Engineering VII, Niagara Falls ON, Canada, 3-8 May 2009 Publiziert in: Macromolecular Symposia, Volume 289, Issue 1, p 155-164 (2010)
- Maxisch T., Seck O., Bothe D., Warnecke H.-J., "A Scale Reduced Approach to Characterize the Mixing Process in Twin-Shaft Kneaders. Part 2: Overall Process" in Vorbereitung
- Seck O., Hennig C., Warnecke H.-J., "Development of Methods for the Investigation of the Mixing and Devolatilization Behavior in continuous Twin-Shaft Kneaders"; Kongress: 19th International Congress of Chemical and Process Engineering/ 7th European Congress of Chemical Engineering, Prague, Czech Republic, 28 August-1 September 2010

Danksagung

Mein besonderer Dank an dieser Stelle gilt Herrn Prof. Dr.-Ing. H.-J. Warnecke für die interessante Themenstellung, sowie die umfangreiche Betreuung und Unterstützung.

Herrn Prof. Dr.-Ing. H.-J. Schmid danke ich für die Übernahme des Korreferats.

Des Weiteren gilt mein Dank den Firmen BASF SE, Bayer Technology Services GmbH und Buss-SMS-Canzler GmbH für die apparative Unterstützung. Ebenso gilt mein Dank den Mitarbeitern der mechanischen Werkstatt der Universität Paderborn für ihre Mithilfe.

Herrn T. Maxisch gilt mein Dank für die numerisch simulative Bearbeitung von Messwerten sowie den offenen Dialog.

Nicht zuletzt möchte ich allen Korrekturleserinnen und -lesern für ihre Geduld und Anregungen danken.

Abschließend möchte ich meiner Mutter danken, die mir durch ihre Unterstützung das Studium und diese Arbeit ermöglicht hat.

Die Untersuchungen, die zu diesen Ergebnissen führten, erhielten Mittel aus dem 7. Rahmenprogramm der Europäischen Gemeinschaft unter erteilter Bewilligung Nr. 228867.

Kurzfassung

Die technische Synthese und die Aufbereitung von polymeren Materialien erfordern geeignete Prozesse und Apparaturen insbesondere dann, wenn Polvmerlösungen/-schmelzen hoher Viskosität vorliegen. Wohl eingeführt und wissenschaftlich eingehend untersucht sind Extrudermaschinen.

Ihr Einsatz ist jedoch auf Verweilzeiten unterhalb von 30 Minuten begrenzt. Oberhalb erweist sich der Einsatz von Knetreaktoren als vorteilhafter, da dieser Maschinentyp großvolumiger ist. Darüber hinaus ist der Materialdurchsatz von der Drehfrequenz mechanisch entkoppelt. Durch die in ihnen übliche teilgefüllte Betriebsweise ist auch eine simultane Entgasung vorteilhaft möglich. Dies macht diesen Reaktortyp für Polykondensationsreaktionen in Masse besonders geeignet. Trotz dieser sich bietenden Vorteile liegen derzeit für die Prozess-intensivierung grundlegende Untersuchungen nicht im ausreichenden Maße vor. Daher ist es Ziel dieser Arbeit, Methoden und Techniken für die Untersuchung des Misch- und Entgasungsverhaltens in Knetreaktoren zu entwickeln. Hierzu wird Silikonöl ($\eta = 100$ Pa s) als viskose Modellsubstanz verwendet.

Zunächst wird das axiale Mischverhalten auf Grundlage der Verweilzeitverteilung von injizierten Farbstofftracern charakterisiert. Die erhaltene Antwortkurve zeigt, dass auf Grundlage des klassischen Dispersionsmodells der Kneter sich wie ein realer Strömungsrohrreaktor verhält. Die Abhängigkeit der Bodenstein-Zahl von der effektiven Anzahl der Knetschläge, dem Produkt aus mittlerer Verweilzeit, Drehfrequenz und Barrenanzahl je Knetelement, erlaubt das axiale Mischverhalten des realen Reaktors bei gegebenen Bedingungen vorherzusagen.

Zur Beschreibung des radialen Mischverhaltens des Knetreaktors sind für diskontinuierliche und kontinuierliche Betriebsweisen sowohl auf makroskopischer als auch auf mikroskopischer Längenskala Methoden und Techniken entwickelt worden. Auf Makroebene (Wellenlänge des sichtbaren Lichts) wird dies durch die Vermischung einer mit Tracer beladenen Silikonölschicht mit einer reinen Silikonölschicht realisiert. Auf Mikroebene erfolgt diese Untersuchung einschließlich des Transportes auf molekularer Ebene durch eine chemische Reaktion zweiter Ordnung. In allen Fällen erfolgt die Untersuchung mittels farbiger Tracer, die eine photometrische Beladungsbestimmung ermöglichen. Im Falle des durch chemische Reaktion gebildeten Tracers ist die generierte Produktmenge ein Maß für die durch Knetung erzeugte Kontaktfläche und daher für die effektive Mischwirkung auf molekularer Ebene. Als Homogenitätskriterium wird das Erreichen der theoretischen Beladung bei einem Variationskoeffizienten der Proben Var < 0,03 verwendet. Auf makroskopischer Ebene wird dieses Kriterium sehr schnell, nach 25 Knetschlägen, erreicht. Für Homogenität auf Mikroebene werden hier doppelt so viele Knetschläge benötigt.

Desweiteren sind auch Methoden und Techniken für die Untersuchung des Entgasungsverhaltens in Knetern entwickelt worden. Hierzu werden sowohl die Filmtheorie als auch die Penetrationstheorie verwendet. Beide liefern gleiche Ergebnisse.

Bezüglich des flüchtigen Kontaminanten im Silikonöl wird zwischen Lösung und Dispersion unterschieden. Für die Entgasung einer homogenen Lösung wird das Modelstoffsystem *n*-Heptan/Silikonöl unter "schäumenden und nicht schäumenden Bedingungen" untersucht. Das Modellstoffsystem 2-Nitrophenol in Silikonöl kann aufgrund seines geringen Dampfdrucks als druckunabhängiges Entgasungssystem betrachtet werden. Für die Untersuchung der Entgasung eines dispergierten Kontaminanten wird eine Wasser-Silikonöl-Dispersion eingesetzt.

Aus dem zeitlichen bzw. örtlichen Entgasungsfortschritt wird der Stofftransfer als k_L *a*-Wert in Abhängigkeit von Temperatur, Drehfrequenz, Füllgrad und Dampfdruckübersättigung bestimmt. Die Entgasungsleistung des Knetreaktors, insbesondere unter "schäumenden Bedingungen", ist hoch und ermöglicht eine effiziente Entgasung aus hochviskosen Lösungen/Schmelzen. Dabei zeigt sich, dass integral gebildete Bewertungsmerkmale wie z.B. der Entgasungswirkungsgrad den lokalen Stofftransfer im Kneter nicht ausreichend charakterisieren können. Hierfür sind Kennwerte aus lokalen Größen erforderlich.

Stichwörter:

Knetreaktor, hochviskos, axiales Mischverhalten, radiales Mischverhalten, Entgasung

Abstract

The technical synthesis and the processing of polymer materials require suitable processes and apparatuses, especially in case of high viscosity. For this purpose screw extruders are well introduced and scientifically investigated.

However their application is restricted to residence times shorter than 30 minutes. Due to their large volume kneader reactors offer larger residence times. Furthermore, the mass throughput is mechanically decoupled from the rotational frequency. Because of their partial filled operation mode a simultaneous devolatilization is enabled advantageously. This fact makes the kneader especially suitable for bulk polycondensation. Despite these advantages, kneader reactors lack sufficient knowledge for process intensification purpose. Therefore, the aim of this thesis is to develop and to adapt methods and techniques to investigate the mixing and devolatilization behavior of these machines. Silicone oil of high viscosity ($\eta = 100$ Pa s) is used as kneading material.

Initially the axial mixing behavior is characterized by the residence time distribution of injected dye tracer. The answer function based on the classic dispersion model show that the kneader behaves like a real plug flow reactor. The dependence of the Bodenstein number on the efficient number of kneading steps - the product of mean residence time, rotational frequency and number of bars of each kneading elements - enables to forecast the axial mixing behavior by given conditions.

For the characterization of the radial mixing behavior methods and techniques are developed, too, both for batch and continuous operation mode on macro scale as well as on micro scale. The mixing on macro scale (wavelength of visible light) is realized by mixing a stacking of pure and tracer-loaded silicone oil layers. The investigation of the micro mixing including the transport on molecular scale is carried out by a fast chemical reaction of second order. In all cases colored tracers are utilized which allow for photometrical mass load detection. In case of generated tracer by chemical reaction the amount of detected product is a measure for the contact area produced by kneading and therefore for the mixing efficiency. The achievement of a variation coefficient of the tracer-loaded samples of *Var* < 0,03 is used as homogeneity criterion. On macro scale the criterion is reached fast, merely after 25 kneading steps. For homogeneity on micro scale significant more kneading steps (> 50) are required.

Moreover methods and techniques are developed to investigate the devolatilization behavior of kneaders. For this purpose both the film theory and the penetration theory are applied. The results of both are equal.

A discrimination concerning the volatile contaminant in silicone oil is required; either it generates a homogeneous solution or merely a dispersed mixture. A solution of *n*-heptane in silicone oil is used for studying the devolatilization behavior under "foaming and non foaming conditions". The prototype solution of 2-nitrophenol in silicone oil is independent on the system pressure due to low partial pressure. For the investigation of the devolatilization of a heterogeneous mixture a water silicone oil dispersion is used.

From the local and temporal devolatilization process the mass transfer as $k_L a$ value is determined in dependence on temperature, rotational frequency, filling level and oversaturation of the partial pressure. The degassing performance is high and allows an efficient devolatilization of high viscous solutions/melts, especially under "foaming conditions".

Thereby it is shown that determining the devolatilization behavior from integral characteristics, e.g. the degassing efficiency, is not sufficient to characterize the process efficiency. For this purpose local samples are necessary.

Keywords:

kneader reactor, high viscous, axial mixing behavior, radial mixing behavior, devolatilization

Symbolverzeichnis

Lateinische Formelzeichen

a	Aktivität	[-]
a_I	Spezifische Phasengrenzfläche	$[m^{-1}]$
$a_{Kon,i}$	Spezifische Kontaktfläche	$[m^{-1}]$
Α	Pre-Tracer (Edukt)	[mol]
A_I	Phasengrenzfläche	[m ²]
A_{Kon}	Kontaktfläche	[m ²]
A_{Peak}	Peak-Fläche	[-]
b_{Reak}	Abstand der Wellen	[m]
b_{RTD}	Breite des Verweilzeitspektrums	[s]
В	Aktivator (Edukt)	[mol]
Bo	Bodensteinzahl	[-]
С	Stoffmengenkonzentration	$[mol \ L^{\text{-1}}]$
C_0	Formal mittlere Maximalkonzentration	$[mol L^{-1}]$
\overline{C}_i	Mittlere Konzentration	$[mol L^{-1}]$
C_{Licht}	Lichtgeschwindigkeit	[m s ⁻¹]
C(t)	Antwortkurve	[-]
d	Durchmesser des Rotors	[m]
d/D	Durchmesserverhältnis	[-]
D	Durchmesser des Gehäuses	[m]
D_{ax}	Axialer Diffusionskoeffizient	$[m^2 s^{-1}]$
D_i	Diffusionskoeffizient	$[m^2 s^{-1}]$
$D_{\rm KE}$	Durchmesser eines Knetelementes	[m]
D_{Reak}	Durchmesser der Reaktionskammer	[m]
Ε	Energie	[J]
E(t)	Anteilsdichtefunktion	[-]
E_{λ}	Extinktion	[-]
EW	Entgasungswirkungsgrad	[-]
Ex	Extraktionszahl	[-]
$f_{\rm mech}$	Übersetzung des Getriebes	[-]
F	Faktor	[-]
F(t)	Anteilssummenfunktion	[-]
G	Lamellenanteil	[-]

h	Planck'sches Wirkungsquantum	[J s]
Н	Henry-Konstante	[n. a.]
ΔH_{v}	Molare Verdampfungswärme	[J mol ⁻¹]
ΔH_v^m	Massenspez. Verdampfungsenthalpie	$[J kg^{-1}]$
Ι	Strahlungsintensität	[W sr ⁻¹]
J	Stoffstromdichte	$[mol s^{-1} m^{-2}]$
k	Stoffübergangskoeffizient	[m s ⁻¹]
$k_{\scriptscriptstyle B}$	Boltzmann-Konstante	[J K ⁻¹]
k_1	Erster Modellparameter	[m ²]
k_2	Zweiter Modellparameter	[m]
k_3	Dritter Modellparameter	[-]
K_{S}	Selbstabreinigungskennziffer	[-]
l	Länge	[m]
$l_{\rm KE}$	Länge eines Knetelements	[m]
$l_{\scriptscriptstyle Reak}$	Länge der Reaktionskammer	[m]
L/D	Längen-/Durchmesserverhältnis	[-]
т	Masse	[kg]
'n	Massenstrom	[kg s ⁻¹]
M_i	Molekulargewicht	[kg mol]
п	Drehfrequenz	[s ⁻¹]
n _{Sub}	Stoffmenge	[mol]
N	Iterationsschritte	[-]
р	Druck	[Pa]
p_i	Dampfdruck von	[Pa]
p_{i}^{0}	Dampfdruck einer Reinsubstanz	[Pa]
Δp_s	Übersättigungsgrad des Druckes	[Pa]
Δp_{mech}	Druckabfall des Hydraulikmotors	[mbar]
Р	aktivierter Tracer	[mol]
P_{mech}	Mechanische Leistung	[W]
r	Radius	[m]
r_B^{krit}	Kritischer Blasenradius	[m]
r_P	Teilchenradius	[m]
R	Universelle Gaskonstante	$[J mol^{-1} K^{-1}]$
S	Empirische Standardabweichung	[n. a.]
s^2	Empirische Varianz	[n. a.]

$S_{R/R}$	Abstand zwischen Rotor/Rotor	[m]
$S_{R/W}$	Abstand zwischen Rotor/Wand	[m]
t	Zeit	[s]
\overline{t}	Mittlere Verweilzeit	[s]
t _{Dev}	Entgasungszeit	[s]
t_{OE}	Oberflächenerneuerungszeit	[s]
t _s	Selbstabreinigungszeit	[s]
t_Z	Dosierzeit	[s]
Т	Temperatur	[K] o. [°C]
T_{Dev}	Entgasungstemperatur	[K] o. [°C]
и	Geschwindigkeit in z-Richtung	[m s ⁻¹]
\overline{u}	Mittlere Strömungsgeschwindigkeit in z-Richtung	[m s ⁻¹]
U	Anzahl der Knetschritte	[-]
\overline{U}	Effiziente Anzahl der Knetschritte	[-]
v	Richtung des Stofftransportes	[m]
V	Volumen	[m ³]
<i>Ϋ</i>	Volumenstrom	$[m^3 s^{-1}]$
$V_{_{Reak}}$	Reaktorvolumen	$[m^3]$
Var	Variationskoeffizient	[-]
V_{S}	Schluckvolumen des Hydraulikmotors	$[m^3]$
W	Massenanteil	[-]
W_{RTD}	Wendepunktabstand des Verweilzeitspektrums	[s]
x	Stoffmengenanteil	[-]
X	Massenbeladung	[-]
\overline{X}_{M}	Normierte Massenbeladung	[-]
Ζ	Fließrichtung	[-]
Z_{Dev}	Entgasungsstrecke	[m]
Ζ	Relative Ortskoordinate	[-]

Griechische Formelzeichen

β	Massenkonzentration	[kg m ⁻³]
γ	Füllgrad	[-]
γ̈́	Schergeschwindigkeit	[s ⁻¹]
δ	Schichtdicke	[m]
ζ	Fluidlamellenabstand	[m]
η	Dynamische Viskosität	[Pa s]
Е	Absorptionskoeffizient	$[m^2 mol^{-1}]$
\mathcal{E}_X	Beladungsspez. Absorptionskoeffizient	$[g mg^{-1} cm^{-1}]$
\mathcal{E}_M	Massenkonz. spez. Absorptionskoeffizient	$[m^2 kg^{-1}]$
θ	Normierte Verweilzeit	[-]
$\overline{\theta}$	Mittlere normierte Verweilzeit	[-]
Θ	Transmission	[-]
к	Probenanzahl	[-]
λ	Wellenlänge	[nm]
ν	Frequenz	[s ⁻¹]
ξ	Effizienz des Umsatzes	[-]
$ ho_i$	Massendichte	[kg m ⁻³]
σ	Wahre Standardabweichung	[n. a.]
σ^{2}	Wahre Varianz	[n. a.]
$\sigma_{\scriptscriptstyle B}$	Oberflächenspannung einer Blase	[kg s ⁻²]
τ	Hydrodynamische Verweilzeit	[s]
χ	Flory-Huggins-Parameter	[-]
υ	Anzahl der Umdrehungen	[-]
φ	Volumenanteil	[-]
Ψ	Anteil	[-]
ω	Wiederfindungswert	[-]

Indices

*	Bulk
0	Rein
œ	Unendlich
2NPH	2-Nitrophenol
2 <i>NP</i> ⁻	2-Nitrophenolat
Aus	Austritt
<i>D</i> 4	Octamethylcyclotetrasiloxan
DBA	Dibutylamin
Dev	Entgasung
dis	Dispersiv
Ein	Eintritt
ext	Außerhalb des Kneters
G	Gasförmig
ges	Gesamt
GG	Gleichgewicht
grav	Gravimetrisch
$H_{2}^{}0$	Wasser
Нер	<i>n</i> -Heptan
HSGC	Headspace-Gaschromatographie
Ι	Grenzfilm
int	Innerhalb des Kneters
kin	Kinetisch
krit	Kritisch
Küv	Küvette
L	Flüssig
LM	Lösemittel
М	Mischung
max	Maximal
Р	Probe
PDMS	Silikonöl
PT	Penetrationstheorie
Rot	Sudan [®] Rot 7B
Sdt	Siedend

Start Startbedingung

sys

System

Inhaltsverzeichnis

Kι	urzfassung	ix
Ab	bstract	xi
Sy	mbolverzeichnis	xiii
1.	Einleitung und Ziel der Arbeit	1
2.	Stand des Wissens	3
	2.1 Mischapparate für hochviskose Medien	5
	2.2 Entgasungsapparate	10
3.	Theoretische Grundlagen	13
	3.1 Mischen und Kneten	13
	3.1.1 Bestimmung der Mischgüte	15
	3.1.2 Verweilzeitverhalten	18
	3.1.3 Axiales Dispersionsmodell	20
	3.1.4 Bewertung der Selbstabreinigung	22
	3.2 Entgasen von Polymeren	23
	3.2.1 Stoffaustauschmodelle	27
	3.2.1.1 Penetrationstheorie	28
	3.2.1.2 Zweifilmtheorie	30
	3.2.2 Systemzustände bei der Entgasung	32
	3.2.2.1 Diskontinuierlicher Betrieb	33
	3.2.2.2 Kontinuierlicher Betrieb	34
	3.3 Analytik	35
	3.3.1 Lambert-Beer'sches Gesetz	35
	3.3.2 Headspace-Gaschromatographie	37
4.	Anlagenaufbau und verwendete Substanzen	39
	4.1 Versuchsanlage	40
	4.1.1 Aufbau des Knetreaktors HVR-5L	41
	4.1.2 Aufbau der Rotoren	43
	4.2 Modellsubstanzen	44
	4.2.1 Silikonöl	45
	4.2.2 Markierungssubstanzen	46
	4.2.2.1 Nicht reaktive Tracer	47

	4.2.2.2 Real	tive Tracer	48
4	2.3 Modellkont	aminanten	51
	4.2.3.1 Nied	ermolekulare organische Substanzen	51
	4.2.3.2 2-Ni	trophenol	54
	4.2.3.3 Was	ser	55
5. Exp	erimente und Er	gebnisse	57
5.1 F	üllgrad		57
5.2 Axiales Mischverhalten		62	
5	2.1 Kalibrierun	g	62
5	2.2 Versuchsdu	rchführung	63
5	2.3 Messung ur	nd Auswertung	65
5	2.4 Diskussion	der Antwortfunktion	66
5	2.5 Mittlere Ve	rweilzeiten	67
5	2.6 Axiale Disp	persion	69
5	2.7 Modell der	effektiven Knetschläge	71
5	2.8 Bewertung	der Selbstabreinigung	73
5	2.9 Fazit		74
5.3 R	adiales Mischve	rhalten	75
5	3.1 Analytik		76
5	3.2 Batch-Vers	uche	77
	5.3.2.1 Durc	hführung: nicht reaktiver Farbtracer	79
	5.3.2.2 Ausv	vertung und Ergebnisse: nicht reaktiver Farbtracer	80
	5.3.2.3 Durc	hführung: reaktiver Farbtracer	84
	5.3.2.4 Ausv	vertung und Ergebnisse: reaktiver Farbtracer	85
5.	3.3 Kontinuierl	iche Versuche	87
	5.3.3.1 Durc	hführung	88
	5.3.3.2 Ausv	vertung und Ergebnisse	89
5	3.4 Modellbildu	ing	90
5.	3.5 Fazit		94
5.4 E	ntgasungsverhal	ten	95
5.4.1 Gelöster Kontaminant		95	
	5.4.1.1 Mod	ellstoffsystem: n-Heptan/ PDMS	96
	5.4.1.1.	l Durchführung: Batch-Betrieb	96
	5.4.1.1.	2 Auswertung und Ergebnisse: Batch-Betrieb	97

	5.4.1.1.3 Durchführung: Kontinuierlicher Betrieb	101
	5.4.1.1.4 Auswertung und Ergebnisse: Kontinuierlicher Betrieb	102
	5.4.1.2 Modellstoffsystem: Octamethylcyclotetrasiloxan/ PDMS	106
	5.4.1.3 Modellstoffsystem: 2-Nitrophenol/ PDMS	109
	5.4.1.3.1 Durchführung	111
	5.4.1.3.2 Auswertung und Ergebnisse	112
	5.4.2 Dispergierter Kontaminant	114
	5.4.2.1 Modellstoffsystem: Wasser/ PDMS	114
	5.4.2.1.1 Durchführung	114
	5.4.2.1.2 Auswertung und Ergebnisse	115
	5.4.3 Entgasungsleistung	117
	5.4.4 Fazit	119
6.	Zusammenfassung und Ausblick	120
7.	Literaturverzeichnis	123
8.	Messwerte	131
	8.1 Absorptionskoeffizienten der Sudanfarbstoffe	131
	8.2 Axiales Mischen	133
	8.3 Radiales Mischen (nicht reaktiv)	143
	8.4 Radiales Mischen (reaktiv)	148
	8.5 Bestimmung von <i>n</i> -Heptan in PDMS mittels HSGC	158
	8.6 Bestimmung der Leckrate	159
	8.7 Entgasung von <i>n</i> -Heptan aus PDMS (Batchbetrieb)	160
	8.8 Entgasung von n-Heptan aus PDMS (kontinuierlicher Betrieb)	166
	8.9 Entgasung von D4 aus PDMS (kontinuierlicher Betrieb)	176
	8.10 Extinktionskoeffizient 2-Nitrophenols in Dibutylamin	178
	8.11 Entgasung von 2-Nitrophenol aus PDMS (Batchbetrieb)	179
Le	Lebenslauf	