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Abstract

In this thesis an optimization method for nonlinear discrete time systems and periodic

operation is presented. The method is particularly suited for engineering problems, as

it can obtain an optimal operation point with desired dynamical properties for models

with uncertain parameters. In typical applications of the method, technical systems are

optimized with respect to economic objectives with nonlinear programming methods,

while the desired dynamical properties are ensured with the so-called normal vector

constraints. The desired dynamical properties are guaranteed for all operation points

in a robustness region around the optimal point.

The normal vector constraints, which are incorporated in the optimization problem,

impose the lower bound on the distance between the optimal point and any critical

boundary. Typical critical boundaries of interest are stability and feasibility bound-

aries. The first ones consist of bifurcation points. The second ones involve points at

which constraints on output or input variables are violated. Once the locations of the

critical points of a system are known, normal vectors on the critical manifolds can be

used to measure the distance from the nominal point of operation to stability and feasi-

bility boundaries in the space of the system design parameters. By staying sufficiently

far away from all critical manifolds we can guarantee robust stability and feasibility of

the system.

Previously the normal vector constraints were applied to the optimization of steady

states of continuous-time systems that are modeled by sets of parametrically uncertain

differential-algebraic equations. In this thesis the normal vector constraints are devel-

oped for fixed points of nonlinear discrete time systems. Such systems frequently arise

in engineering applications, either because the model is intrinsically discrete in time,

or because the model is the result of a time discretization. Attention is paid to both

of these cases. Since stability properties of discrete time systems and periodically op-

erated systems are closely related, the normal vector constraints are considered for the

optimization of oscillating models. Note that besides processes, where only oscillating
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Abstract

states occur, there exist models that can be operated periodically or at a steady state.

The situation where the normal vector constraints for periodic operation are combined

with the case of operation at a steady state is discussed.

The concept of the normal vector constraints is successfully applied to the opti-

mization procedures of supply chains which are modeled as discrete time systems, a

fermentation process that results from sampling the continuous time model, and ex-

amples of oscillating chemical reactions.
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Notation

The symbols used for particular model descriptions from Chapters 4 and 6 are omitted

here. The meaning of these symbols is explained in the corresponding sections together

with the model equations.

Roman letters

B matrix of normal space basis vectors in columns

C mass matrix of dynamical system with algebraic equations

D open neighborhood of a point in R
nx × R

ny × R
nα

d distance between critical manifold and candidate optimal point

F dynamical and algebraic system equations

f , f̃ dynamical system equations

G normal vector system equations

g algebraic system equations

ĝ equation defining robustness manifold

h system constraints

I identity matrix

i square root of −1

L first Lyapunov coefficient

M has different meaning through the text. If it is used with superscript, than

it means a manifold. If it is used with dependency on t, than it is a funda-

mental matrix solution of differential equation. The special case of it M(T )

is called a monodromy matrix.

m rate of uncertainty hypersquare approximation

nh number of system constraints

nx number of dynamic state variables

ny number of algebraic state variables
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Notation

nz number of dynamic and algebraic state variables

nα number of uncertain parameters

P Poincaré map

p vector of initial conditions, period, and parameters for periodic orbits

Q open neighborhood of a point in R
nx × R

nα

q vector of state variables and parameters for equilibria

R radius of circle in complex plane

r normal vector

s phase condition

T period

t time

U open neighborhood of a point in R
nx

u auxiliary variable in normal vector systems

V open neighborhood of a point in R
ny

v eigenvector

v̂ generalized eigenvector

W open neighborhood of a point in R
nα

w eigenvector

ŵ generalized eigenvector

x vector of dynamic state variables

x vector of auxiliary variables in normal vector systems

y vector of algebraic state variables

z vector of dynamic and algebraic state variables

z vector of auxiliary variables in normal vector systems

Greek letters

α vector of uncertain parameters

γ auxiliary variable in normal vector systems

Δαi uncertainty of parameter αi

Δt discretization step-size

ζ local coordinates on Poincaré section

η number of continuous derivatives

θ argument of complex number
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Notation

κ linear combination of normal space basis vectors

κ auxiliary variable in normal vector systems

λ eigenvalue

λ complex conjugate of λ

λ̂ generalized eigenvalue

ξ local solution for algebraic variables

Σ Poincaré section

τ time delay

Φ0 periodic orbit

φ objective function

ϕ, ϕ̃ flow of differential equation

ω imaginary part of complex number

Calligraphic letters

I set of normal vector constraints to critical equilibria and fixed points

J set of normal vector constraints to critical periodic solutions

L set of close critical points

Mathematical notation

C complex numbers

dist Euclidean distance

inf infimum

N natural numbers

∇ gradient

R real numbers

R
+ positive real numbers

Range range of a matrix (column space)

Rank rank of a matrix

Re real part of a complex number

‖ · ‖ Euclidean norm

〈·, ·〉 scalar product

∀ for all
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Notation

⊂ subset of

∪ union of sets

Subscript

i, j, k index variable

max maximum value

min minimum value

0 initial value

Superscript

c critical point

end resulting point of optimization procedure

i, î, j, k index variable

flip flip bifurcation point

fl̃ip modified flip point

fold fold bifurcation point

f̃old modified fold point

Hopf Hopf bifurcation point

NS Neimark-Sacker bifurcation point

ÑS modified Neimark-Sacker point

rob robustness

sn saddle-node bifurcation point

start initial point of optimization procedure

T transposition

0 nominal point

Abbreviations

APIOBPCS automatic pipeline, inventory and order based production control

system

CSTR continuously stirred-tank reactor

DDE delay differential equation

NLP nonlinear program
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Notation

ODE ordinary differential equation

SQP sequential quadratic programming

VMI vendor managed inventory

Derivatives

We assume that subscripts μ and ν enumerate rows and columns, respectively. Note

that, for example, in xμ, μ runs from 1 to nx, whereas in αμ, μ = 1, . . . , nα. In the

thesis the following notations for derivatives are used

(Fz)μν =
∂Fμ
∂zν

, (Fα)μν =
∂Fμ
∂αν

,

(Fzzŵ)μν =
nz∑
ρ=1

∂2Fμ
∂zν∂zρ

ŵρ, (Fzαŵ)μν =
nz∑
ρ=1

∂2Fμ
∂αν∂zρ

ŵρ,

(v̂TFzzŵ)μ =
nz∑

ρ,σ=1

v̂ρ
∂2Fρ
∂zμ∂zσ

ŵσ, (v̂TFzαŵ)μ =
nz∑

ρ,σ=1

v̂ρ
∂2Fρ
∂αμ∂zσ

ŵσ,

(ϕx0)μν =
∂ϕμ
∂x0ν

, (ϕα)μν =
∂ϕμ
∂αν

,

(ϕT )μ =
∂ϕμ
∂T

, (ϕx0x0w)μν =
nx∑
ρ=1

∂2ϕμ
∂x0ν∂x0ρ

wρ,

(ϕx0αw)μν =
nx∑
ρ=1

∂2ϕμ
∂αν∂x0ρ

wρ, (ϕx0Tw)μ =
nx∑
ρ=1

∂2ϕμ
∂T∂x0ρ

wρ,

(vTϕx0x0w)μ =
nx∑

ρ,σ=1

vρ
∂2ϕρ

∂x0μ∂x0σ
wσ, (vTϕx0αw)μ =

nx∑
ρ,σ=1

vρ
∂2ϕρ

∂αμ∂x0σ
wσ,

vTϕx0Tw =
nx∑

ρ,σ=1

vρ
∂2ϕρ
∂T∂x0σ

wσ.
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