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Summary

Advanced driver assistance systems increase the comfort, efficiency, and safety
of nowadays and future automobiles. Especially if these systems need to
derive a safety critical decision like an emergency brake they require a reliable
and precise environment recognition in order to keep the false triggering rate
close to zero.

In this work, environment recognition means to recursively estimate both
the time varying number of objects in a scene and their parameters like posi-
tion and velocity—so called multiple object tracking. The thesis summarizes
typical state of the art multiple object tracking approaches which classically
consist of separate detection, observation association, and estimation stages.
Often, the detection and association steps derive decisions which are hardly
reversible during the tracking process. Additionally, the majority of current
multiple object tracking systems insufficiently model the spatial extension of
objects though high resolution sensors like laser scanner can observe it.

The scope of this work is to overcome these limitations by integrating
dynamic as well as a priori knowledge into one Bayes filter, which is imple-
mented by a reversible jump Markov chain Monte Carlo sampling approach.
By that, it is possible to track spatially extended objects without dedicated
detection and association steps. Instead, several models are combined in an
integrated Bayesian estimation process. These models include how objects
look like and move, where they are expected to appear and disappear, and
how they interact with each other. By that, the approach contributes to
the field of spatially extended object tracking and provides many connection
points for further investigation.

The resulting multiple object tracking system rigorously utilizes the Bayesian
framework to cope with the uncertainties occurring in different domains. This
includes association ambiguities as well as observation and system process
noises. Furthermore, a track management is included in a statistical fashion.

The work demonstrates three case studies of multiple spatially extended
object tracking utilizing different sensors and algorithmic approaches. At first,
a data fusion system combining a radar and a camera sensor using a classical
multiple object tracking method is shown. Hereafter, a lidar based system
is demonstrated which uses advanced occupancy grid methods in order to
detect and track spatially extended objects. Finally, an implementation of
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SUMMARY

the reversible jump Markov chain Monte Carlo sampling approach for a lidar
based tracking of spatially extended objects is shown.
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Glossary

Greek letters
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(z)

AME >HI N Qx 72w

Unscented Kalman filter parameter
IPDA weights

Unscented Kalman filter parameter
Unscented Kalman filter scaling parameter
Unscented Kalman filter parameter
Sigma points

Transformed sigma points

Random walk process noise
Normalization constant

Gamma function

Parameter of the Poisson distribution
Weight of =

Covariance matrix

Standard deviation

Measurement and state space variables

® R g~ DI O E

Acceleration

x component of the ego motion between £ — 1 and k
y component of the ego motion between k — 1 and k
0 component of the ego motion between k£ — 1 and k
Object yaw rate

Radar beam angle

Radar range rate

Radar range

Object heading

Velocity

Object length

Object width

Position x

Position y

Probabilistic expressions and operators

Gu (")

Delta distribution at u
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Glossary

N(z,%,5) Gaussian PDF of z with mean & and variance S
g Stationary probability density function

U(Zmin, Tmax) Uniform PDF of 2 with lower and upper bound Zmin, ZTmax
p(zk|zK) Likelihood function of z at time k

p(xk| Zk) A posteriori PDF of x at time k

p(xk| Zr—1) A priori PDF of z at time k

p(zk|xe—1) Transition PDF of z at time k

\ Conditioned on

x Proportional to

~ Distributed according to

dm Existence random variable of object m

3 Object exists

El Object does not exist

PD Detection probability

Pr False alarm probability

PB Object birth probability

pp Object persistence probability

Roman letters

A Camera calibration matrix

a Acceptance rate

Agd Appearing and disappearing area
A, Constant object number area
B Number of beams

b Beam index

(b9 Grid cell at index ¢, j

d Mahalanobis distance

dyp Distance at beam b

AT Timespan between t;_1 and t
ds Observed distance at feature f
f@) State transition function

f Feature

F State transition matrix

H, Normalized entropy

h(-) Observation function

H Observation matrix

K Kalman gain

k Discrete time

M Number of objects/observations
m Observation index

s,e,rl,m Object index
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Glossary

N Number of samples

n Sample index

o) Upper bound on the growth rate of a function

P Covariance matrix of the state

p(+) Probability density function

p*(*) Non-normalized probability density function

Q Covariance matrix of the process noise

R Covariance matrix of the observation noise

w Unscented Kalman filter weights

q(+) Proposal density function

qr Proposal ratio

R Rotation matrix of a homogeneous transformation
Iy Grid resolution in x direction

ry Grid resolution in y direction

T Translation matrix of a homogeneous transformation
t Time

U Logarithmic existence probability ratio

U Covariance matrix of the expected observation
\% Hyper volume of the gate

S Variance of x

T Mean of x

w Width in image coordinates

iz Image x coordinate

iy Image y coordinate

X State space

Tk Probably multidimensional state of a system at time k
! Proposal sample

T Probably multidimensional random variable

To Grid position offset in x direction

Tt State of a Markov chain at ¢

z(™ Sample n

Yo Grid position offset in y direction

z Probably multidimensional random variable

Zy Set of all observations until time k

2k Probably multidimensional observation at time k

Set expressions and auxiliary operators

C Occupancy grid cells, current object set
|S] Cardinality of S

VP Cholesky decomposition of P

|P| Determinant of P
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~

Expectation value operator
Feature pool
Assignable features
Assigned features
Inverse of P

Set of natural numbers
Entering objects
Empty set

Leaving objects

Set of objects that stay
Set of objects

Set of samples
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CDF
CTRA

EKF

FIR
FMCW

GNSS

HMI

INS
IPDA

JIPDA
LDW
MAP
MCMC
MHT
MIT
MOT

OSPA

Adaptive cruise control
Advanced driver assistance systems

Cumulative density function
Constant turn rate and acceleration

Extended Kalman filter

Far infrared
Frequency modulated continuous wave

Global navigation satellite system
Human machine interface

Inertial navigation system
Integrated probabilistic data association

Joined integrated probabilistic data association
Lane departure warning

Maximum a posteriori approximation
Markov chain Monte Carlo

Multiple hypothesis tracking

Most important target

Multiple object tracking

Optimal subpattern assignment
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PDA
PDF

RIMCMC
ROI

SIR
SIS
SPRT
TBD

UKF
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Probabilistic data association
Probability density function

Reversible jump Markov chain Monte Carlo
Region of interest

Sampling-Importance-Resampling
Sequential importance sampling
Sequential probability ratio testing
Track-before-detect

Unscented Kalman filter



