Einsatz pneumatischer Muskeln als Aktoren in der Robotik

Dissertation

 \mathbf{zur}

Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultät für Maschinenbau und Schiffstechnik der Universität Rostock

> vorgelegt von Dominik Schindele geboren in Krumbach (Schwaben)

Erstgutachter:	Prof. DrIng. Harald Aschemann
	Lehrstuhl für Mechatronik / Universität Rostock
Zweitgutachter:	Prof. DrIng. habil. Christoph Woernle
	Lehrstuhl für technische Mechanik/Dynamik / Universität Rostock
Drittgutachter:	Prof. DrIng. Walter Schumacher
-	Institut für Regelungstechnik / TU Braunschweig
	· · · -

Tag der Verteidigung: 23. November 2012

Lehrstuhl für Mechatronik der Universität Rostock

Berichte aus dem Lehrstuhl für Mechatronik Universität Rostock

Band 1

Dominik Schindele

Einsatz pneumatischer Muskeln als Aktoren in der Robotik

Shaker Verlag Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Rostock, Univ., Diss., 2012

Copyright Shaker Verlag 2013 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1722-9 ISSN 2195-9234

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Mechatronik der Fakultät für Maschinenbau an der Universität Rostock.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Harald Aschemann, Inhaber des Lehrstuhls für Mechatronik für die hervorragende wissenschaftliche Betreuung der vorliegenden Arbeit. Die zahlreichen Diskussionen und Anregungen haben wesentlich zur Enstehung dieser Arbeit beigetragen.

Des Weiteren möchte ich Herrn Prof. Dr.-Ing. habil. Christoph Woernle, Lehrstuhl für Technische Mechanik/Dynamik für die Erstellung des Zweitgutachtens und die vielen hilfreichen Anmerkungen danken. Ebenso möchte ich Herrn Prof. Dr.-Ing. Walter Schumacher, Institut für Regelungstechnik, TU Braunschweig für die unkomplizierte Erstellung des externen Gutachtens danken.

Außerdem bedanke ich mich bei allen Kollegen für die sehr angenehme Arbeitsatmosphäre und die konstruktive Zusammenarbeit. Für seine wertvollen Beiträge möchte ich außerdem Herrn Dipl.-Ing. René Schuh danken. Herzlich Danken möchte ich auch Johann Schindele, Carina Ruch und Luise Senkel für das sorgfältige Korrekturlesen des Manuskripts.

Ganz besonders Danke ich meiner Frau Sibylle, die mir stets Kraft für mein Promotionsvorhaben gegeben hat. Darüber hinaus Danke ich meinen Eltern Johann und Gabriele, die mich stets in meinem Werdegang unterstützt haben.

Ich widme diese Arbeit meiner Oma Maria Schindele, die mich in Ihren letzten Jahren aufgrund meiner Tätigkeit in Rostock leider viel zu selten gesehen hat.

Rostock, im Dezember 2012

Dominik Schindele

Kurzfassung

Pneumatische Muskeln stellen innovative pneumatische Antriebskomponenten mit einem sehr hohen Kraft/Gewicht-Verhältnis dar. Sie bestehen aus einem Gummischlauch, der durch ein spezielles Fasergewebe verstärkt ist. An den Enden sind Anbindungsstücke zur Be- bzw. Entlüftung der Muskeln sowie zum Einbau in mechanische Konstruktionen vorhanden. Dieser einfache Aufbau führt dazu, dass pneumatische Muskeln sehr preisgünstig sind, keinem Stick-Slip-Effekt unterliegen und unempfindlich gegenüber schmutziger Arbeitsumgebung sind. Deren Elastizität kann außerdem Sicherheitsvorteile bei bestimmten Anwendungen bieten. Aufgrund der genannten Vorteile stellen pneumatische Muskeln für viele Anwendungen eine interessante Alternative zu herkömmlichen pneumatischen Antrieben und teilweise auch zu elektrischen Antrieben dar. Die Kraft- und die Volumencharakteristik dieser pneumatischen Aktoren ist jedoch durch starke nichtlineare Effekte geprägt, was durch geeignete Regelungskonzepte berücksichtigt werden muss. Da es sich bei diesen Aktoren um reine Zugaktoren handelt, muss außerdem eine Rückstellkraft, z.B. in Form eines zweiten Muskels, bereitgestellt werden.

In der vorliegenden Arbeit werden verschiedene Ansätze zur Regelung und Störgrößenreduktion vorgestellt, mit denen sich ein gutes Folgeverhalten bei hoher Dynamik von Positioniersystemen mit pneumatischen Muskeln erzielen lässt. Die Leistungsfähigkeit der vorgeschlagenen Regelungskonzepte wird an zwei unterschiedlichen Prüfständen mit pneumatischen Muskeln aufgezeigt. Bei einer Linearachse mit pneumatischen Muskeln werden die Antriebskräfte der Muskeln über Flaschenzüge auf den Schlitten übertragen, wodurch sich ein größerer Arbeitsraum im Vergleich zu einer direkten Antriebskonfiguration ergibt. Der zweite Versuchsaufbau entspricht einer Parallelkinematik mit zwei Freiheitsgraden zur Positionierung eines Endeffektors in der Ebene. Die Zugkräfte der Muskeln werden hier über Zahnriemen und Umlenkrollen auf die aktiven Gelenke übertragen.

Basis für die eingesetzten modellgestützten Verfahren zur Regelung und Störgrößenkompensation sind regelungsorientierte Modelle der untersuchten Prüfstände. Zur Modellbildung werden die entsprechenden Systeme nach deren physikalischen Eigenschaften aufgeteilt und dynamische Modelle für das Verhalten der komprimierten Luft im Muskel sowie der einzelnen mechanischen Teilsysteme erstellt. Das nichtlineare Verhalten der Muskelkraft wird durch ein statisches Kraftmodell in Kombination mit einem dynamischen Hysterese-Modell wiedergegeben. Die Charakteristik des verwendeten Proportional-Wegeventils wird durch ein nichtlineares Kennfeld approximiert. Damit die Modelle die Realität möglichst gut abbilden, ist eine genaue Kenntnis der Modellparameter erforderlich. Für die Identifikation der Parameter des Muskelmodells wurde ein weiterer Prüfstand aufgebaut. Dieser ermöglicht eine automatisierte Identifikation der benötigten Kennwerte. Über geeignete Optimierungsverfahren lässt sich eine gute Übereinstimmung zwischen Messungen am realen System und dem jeweiligen Modell erreichen.

Für die untersuchten Systeme werden jeweils kaskadierte Regelungsansätze verfolgt. In schnellen unterlagerten Regelkreisen werden die Muskeldrücke geregelt, während in einem äußeren Regelkreis jeweils die Ausgangsgrößen der mechanischen Teilsysteme geregelt werden. Alternativ zu den Muskeldrücken können auch die Muskelkräfte unterlagert geregelt werden. Dieser Fall wird separat behandelt. Zur modellbasierten Regelung wird das Backstepping-Verfahren verwendet, das auf der Stabilitätstheorie von Ljapunow basiert. Dabei kann die differentielle Flachheit der geregelten Teilsysteme zur Kompensation aller Nichtlinearitäten ausgenutzt werden. Die Reglerstruktur wird mit unterschiedlichen Methoden zur Störgrößenkompensation erweitert. Neben einer adaptiven Strategie zur Schätzung der Unsicherheiten kommt auch ein Störgrößenbeobachter sowie die rekursive quadratische Gütemaßminimierung zum Einsatz. Ein weiterer Ansatz zur Verbesserung des Regelverhaltens besteht in der Verwendung von iterativ lernenden Regelungen. In dieser Arbeit werden ein norm-optimaler Ansatz und ein proportionaler Ansatz zur iterativen Regelung der beiden Prüfstände eingesetzt.

Im wesentlichen Teil dieser Arbeit wird jeweils ein separates Proportionalventil zur Ansteuerung der einzelnen Muskeln verwendet. Um Kosten zu reduzieren, besteht aber auch die Möglichkeit, Aktor und Gegenaktor mit nur einem gemeinsamen Ventil anzusteuern. Auf diesen Fall wird gesondert eingegangen.

Das hohe Potential der vorgestellten Regelungskonzepte wird anhand zahlreicher experimenteller Ergebnisse belegt. Dabei liegt das Augenmerk sowohl auf dem Trajektorienfolgeverhalten als auch auf der stationären Genauigkeit.

Inhaltsverzeichnis

A	bbild	lungsverzeichnis	IX
Sy	mbo	olverzeichnis 2	сШ
1	Ein	leitung	1
	1.1	Der pneumatische Muskel	1
	1.2	Stand der Technik	3
		1.2.1 Modellbildung	4
		1.2.2 Regelung pneumatischer Antriebe	5
		1.2.3 Behandlung von Störgrößen	6
	1.3	Ziele dieser Arbeit	7
	1.4	Gliederung der Arbeit	8
2	Mo	dellbildung	10
	2.1	Kraftcharakteristik des pneumatischen Muskels	10
		2.1.1 Statisches Kraftkennfeld	11
		2.1.2 Modellierung der Hysterese mit dem Bouc-Wen-Modell	12
	2.2	Volumencharakteristik des pneumatischen Muskels	14
	2.3	Dynamik des pneumatischen Muskels	15
	2.4	Ventilcharakteristik	17
	2.5	High-Speed-Linearachse mit Flaschenzug	21
		2.5.1 Modellierung des mechanischen Teilsystems	24
		2.5.2 Statisches Reibmodell	25
		2.5.3 LuGre-Reibmodell	26
		2.5.4 Modellierung des pneumatischen Teilsystems	27
	2.6	Fünfgelenk-Parallelroboter	28
		2.6.1 Modellierung des mechanischen Teilsystems	30
		2.6.2 Modellierung des pneumatischen Teilsystems	38
3	Ide	ntifikation der Modellparameter	39
	3.1	Parameteridentifikation durch quadratische Gütemaßminimierung	39
	3.2	Parameteridentifikation durch nichtlineare Optimierung	41
	3.3	Identifikation der Muskelcharakteristiken	41
		3.3.1 Identifikation der Kraftcharakteristik	43
		3.3.2 Identifikation des Volumenkennfelds	47
	3.4	Identifikation der Ventilcharakteristik	50
	3.5	Identifikation der Reibkennwerte	53

	3.6	Experi	imentelle Ergebnisse	. 55
		3.6.1	High-Speed-Linearachse	. 55
		3.6.2	Parallelroboter	. 55
4	Reg	lersyn	these	59
	4.1	Differe	entiell flache Systeme	. 62
	4.2	Regelu	ıng des Muskeldrucks	. 62
	4.3	Backst	tepping-Regelung	. 64
		4.3.1	Stabilität nichtlinearer zeitinvarianter Systeme	. 64
		4.3.2	Control-Ljapunow-Funktionen	. 66
		4.3.3	Backstepping-Entwurf für die High-Speed-Linearachse	. 66
		4.3.4	Adaptives Backstepping für die High-Speed-Linearachse	. 70
		4.3.5	Backstepping-Entwurf für den Parallelroboter	. 72
		4.3.6	Adaptives Backstepping für den Parallelroboter	. 74
	4.4	Störgr	ößenbeobachter	. 76
		4.4.1	Nichtlinearer reduzierter Beobachter	. 76
		4.4.2	Störgrößenbeobachter für die High-Speed-Linearachse	. 77
		4.4.3	Störgrößenbeobachter für den Parallelroboter	. 79
	4.5	Rekurs	sive Quadratische Gütemaßminimierung	. 81
		4.5.1	RLS für die High-Speed-Linearachse	. 83
		4.5.2	RLS für den Parallelroboter	. 84
	4.6	Impler	mentierung der Reglerstruktur	. 86
		4.6.1	Differentiation und Filterung der Messsignale	. 86
		4.6.2	Differentiation der Sollgrößen der unterlagerten Regelkreise	. 87
		4.6.3	Zeitableitung der geschätzten Unsicherheiten	. 88
		4.6.4	Parallelmodell zur Kompensation der Hysterese	. 89
	4.7	Experi	imentelle Ergebnisse	. 90
		4.7.1	High-Speed-Linearachse	. 91
		4.7.2	Parallelroboter	. 95
5	Iter	ativ le	rnende Regelung	103
	5.1	P-ILC	mit Phasenkompensationsglied	. 104
		5.1.1	PID-ILC	. 105
		5.1.2	P-ILC für die Prüfstände mit pneumatischen Muskeln	. 105
	5.2	Norm-	optimal iterativ lernende Regelung	. 109
		5.2.1	NOILC für die High-Speed-Linearachse	. 114
		5.2.2	NOILC für den Parallelroboter	. 115
	5.3	Experi	imentelle Ergebnisse	. 116
		5.3.1	High-Speed-Linearachse	. 116
		5.3.2	Parallelroboter	. 120
6	A]+4	ernativ	ze Aktor- und Sensorkonzente	124
5	6.1	Anstei	uerung von Aktor und Gegenaktor mit einem Ventil	124
	0.1	6.1.1	High-Speed-Linearachse mit nur einem Ventil	124
		6.1.2	Experimentelle Ergebnisse	124
	6.2	Unterl	agerte Regelung der Muskelkraft	120
	0.2	6.2.1	Unterlagerte Kraftregelung für die High-Speed-Linearachse	120
		0.2.1		

	6.2.2	Experimentelle Ergebnisse	. 132
7	Zusammer	nfassung	133
Literaturverzeichnis 13		135	

Abbildungsverzeichnis

1.1	Der pneumatische Muskel der Festo AG & Co. KG.	2
1.2	Arbeitsprinzip des pneumatischen Muskels	3
2.1	Pneumatischer Muskel im entspannten und im kontrahierten Zustand	11
2.2	Identifiziertes Kraftkennfeld des pneumatischen Muskels	12
2.3	Hystereseform für das generalisierte Bouc-Wen-Modell und gemessene Hyste-	
	rese eines pneumatischen Muskels	15
2.4	Identifiziertes Volumenkennfeld des pneumatischen Muskels.	16
2.5	Durchflussfunktion in Abhängigkeit vom Druckverhältnis	18
2.6	Anschlussbelegung und Leitwerte des Proportionalwegeventils	19
2.7	Identifizierter Leitwertverlauf in Abhängigkeit von der Ventilspannung	20
2.8	Ventilkennfeld und entsprechendes inverses Ventilkennfeld.	21
2.9	Foto der High-Speed-Linearachse und schematischer Prüfstandsaufbau.	22
2.10	Direkte und indirekte Antriebskonfiguration einer Linearachse mit pneumati-	
	schen Muskeln.	23
2.11	Schematische Darstellung des linken Flaschenzugs	24
2.12	Statisches Reibmodell in Abhängigkeit von der Geschwindigkeit.	26
2.13	Foto des Funtgelenk-Parallelroboters.	29
2.14	Antriebskonfiguration des Parallelroboters sowie separate Proportionalventile zur Belüftung der einzelnen pneumatischen Muskeln	30
2.15	Schematischer Aufbau des Parallelroboters	30
2.16	Skizze zur direkten und zur inversen Kinematik.	32
3.1	Prüfstand zur Identifikation der Muskelcharakteristiken	42
3.2	Gemessene Zugkraft in Abhängigkeit vom Druck sowie gemessene Zugkraft in	
	Abhängigkeit von der Kontraktionslänge.	43
3.3	Vergleich zwischen Messung und Modell mit identifizierten Parametern sowie	
	identifiziertes Kraftkennfeld.	45
3.4	Vergleich der gemessenen Kraft mit der modellierten Kraft in Abhängigkeit	. –
	von der Kontraktionslänge.	47
3.5	Vergleich des zeitlichen Verlaufs der gemessenen Kraft mit der modellierten	
0.0	Kraft fur den Muskeltyp DMSP-20-1083N.	47
3.6	Vergleich des zeitlichen Verlaufs der gemessenen Kraft mit der modellierten	40
97	Kraft für den Muskeltyp DMSP-40-1145N.	48
3.7	vergieich zwischen Messung und Modell mit identifizierten Parametern des	40
20	Wuskelvolumens sowie identifiziertes volumenkenmend	49 50
0.O	versuchsautbau zur Identilikation der ventlikennwerte.	- 90

3.9	Vergleich von gemessenem und identifiziertem Massenstrom und der sich er- gehande relative Fehler	51
3 10	Vergleich des gemessenen und des nach der Additivitäts-Methode herechneten	01
0.10	Massenstroms und der sich ergebende relative Fehler.	52
3.11	Leitwert in Abhängigkeit der Ventilspannung für das einzelne Ventil und für	
	das eingebaute Ventil in Reihenschaltung mit Schlauch und Verschraubungen.	52
3.12	Blockstruktur der Vorsteuerung zur Messwerterfassung für die Identifikation	
	der Reibkraft.	53
3.13	Vergleich der aus Messungen bestimmten Reibkennlinie mit der Reibkennlinie, die sich aus dem statischen Modell ergibt.	54
3.14	Vergleich des Folgeverhaltens des gesteuerten Systems.	56
3.15	Vergleich der Antriebskräfte des gesteuerten Systems mit und ohne Berück-	-
0.10	sichtigung von Krafthysterese und Reibung.	56
3.16	Endeflektorposition in der xz-Ebene für das gesteuerte System mit und ohne Derücksichtigung der Uvstanges	57
2 17	Endoffekterposition in a und in a Pichtung mit und ehne Berücksichtigung	57
0.17	der Hysterese sowie die korrespondierenden Folgefehler	57
3 18	Vergleich der Antriehsmomente mit und ohne Berücksichtigung der Hysterese	58
0.10	vergreich der interiossinomente mit und onne beruckstenegang der injoterese.	00
4.1	Blockstruktur des kaskadierten Regelungskonzepts.	59
4.2	Vergleich der Reglerstrukturen für Backstepping, P-ILC und NOILC	61
4.3	Blockstruktur der unterlagerten Regelung des Muskelinnendrucks	63
4.4	Blockstruktur der Backstepping-Regelung für die High-Speed-Linearachse.	70
4.5	Blockstruktur der adaptiven Backstepping-Regelung für die Linearachse	71
4.6	Blockstruktur der Backstepping-Regelung für den Parallelroboter.	74
4.7	Blockstruktur der adaptiven Backstepping-Regelung für den Parallelroboter.	75
4.8	Blockstruktur der Backstepping-Regelung für die High-Speed-Linearachse in-	70
4.0	Klusive Storbeobachter.	18
4.9	Biockstruktur der Backstepping-Regelung für den Paralleiroboter inklusive	80
4 10	Blockstruktur der Beckstenning-Begelung für die High-Speed-Lineerschse inkl	80
4.10	Störgrößenschätzung mittels rekursiver quadratischer Gütemaßminimierung	84
4.11	Blockstruktur der Backstepping-Regelung für den Parallelroboter inkl. Stör-	01
	größenschätzung mittels rekursiver quadratischer Gütemaßminimierung	85
4.12	Blockstruktur der adaptiven Backstepping-Regelung für die Linearachse inklu-	
	sive Hysteresekompensation.	90
4.13	Blockstruktur der adaptiven Backstepping-Regelung für den Parallelroboter	
	inklusive Hysteresekompensation.	91
4.14	Solltrajektorien für die Schlittenposition und die Schlittengeschwindigkeit.	92
4.15	Regelfehler für die Schlittenposition und den mittleren Muskeldruck. Regelung:	_
	Adaptives Backstepping.	92
4.16	Vergleich des Positionsfehlers für verschiedene Anteile zur Störgrößenkompen-	0.0
4 1 -	sation in der Keglerstruktur sowie die geschatzte Storgroße	93
4.17	Regenenier für die Schlittenposition und die geschätzte Unsicherheit. Rege-	0.5
	iung: Dackstepping mit Storgroßenbeobachter.	93

4.18	Regelfehler für die Schlittenposition und die geschätzte Unsicherheit. Rege-
	lung: Backstepping mit RLS
4.19	Regelfehler für die Schlittenposition und die geschätzte Unsicherheit infolge
	einer Zusatzmasse
4.20	Verlauf der Muskelinnendrücke für die High-Speed-Linearachse 95
4.21	Solltrajektorien für den Parallelroboter im Arbeitsraum
4.22	Trajektorienfolgefehler im Arbeitsraum sowie der Mitteldruckfehler. Regelung:
	Adaptives Backstepping
4.23	Trajektorien im Gelenkraum sowie Trajektorienfolgefehler. Regelung: Adapti-
	ves Backstepping
4.24	Einfluss der Hysteresekompensation: Regelfehler in x - und in z -Richtung. Re-
	gelung: Backstepping
4.25	Einfluss der Hysteresekompensation: Geschätzte Störmomente. Regelung: Back-
	stepping
4.26	Trajektorienfolgefehler im Arbeitsraum. Regelung: Backstepping mit Störbeobachter. 100
4.27	Trajektorienfolgefehler im Arbeitsraum. Regelung: Backstepping mit rekursi-
	ver quadratischer Gütemaßminimierung
4.28	Trajektorienfolgefehler im Arbeitsraum im Falle einer Zusatzmasse 101
4.29	Verlauf der Muskelinnendrücke für den Parallelroboter
F 1	
5.1	Biockdiagramm für die P-ILC Regelungsstruktur
5.2	Biockstruktur der P-ILC-Regelung für die High-Speed-Linearachse 107
5.3 E 4	Nyquist-Ortskurven des geschlossenen Regelkreises für die Linearachse 107
5.4 F F	Biockstruktur der P-ILC-Regelung für den Paralleiroboter
5.5 5.C	Nyquist-Ortskurven des geschlossenen Regelkreises für den Paralleiroboter 108
5.0	Biockdiagramm für die NOILO-Regelungsstruktur.
5.7	Blockstruktur der NOILC-Regelung für die High-Speed-Linearachse
0.8 5 0	Diockstruktur der NOILC-Regelung für den Paraneiroboter
5.9 E 10	RMS-Fenier für die High-Speed-Linearachse
5.10	für mehr als hundert Iterationen 110
E 11	Degelfehlen möhrend den 12. Itaritien (High Speed Lineanschae)
5.11	Regenemer wannend der 15. iteration (righ-speed-Linearachse)
5.12	RMS-Feller der Celenhwinkel a und a
5.15	\mathbf{R}_{MO} Fehler mit erternen Stämung 121
5.14	RMS-Feller fill externer Storung. 121 DMC Feller für hundert Iterationen 122
5.10	RMS-Feller für flundert iterationen
5.10	Vergleich des Deselfchlers für U.C. und edentivern Decksternning
0.17	vergieich des Regelieniers für TLC und adaptivent Dackstepping
6.1	Blockstruktur der mittels Backstepping geregelten Linearachse für die Konfi-
	guration mit nur einem Ventil
6.2	Solltrajektorie für die Schlittenposition und korrespondierender Regelfehler für
	die Variante mit einem Ventil
6.3	Blockstruktur der Backstepping-Regelung mit unterlagerter Kraftregelung 131
6.4	Solltrajektorie für die Schlittenposition und der korrespondierende Regelfehler
	für die Variante mit unterlagerter Kraftregelung

Symbolverzeichnis

Abkürzung Bedeutung

a_M	Anzahl der verwendeten pneumatischen Muskeln pro Flaschenzug
b	Kritisches Druckverhältnis
b_v	Parameter zur Beschreibung der viskosen Reibung
C	Ventilleitwert
e_{RMS}	Mittlerer quadratischer Fehler
F_C	Coulombreibung
F_H	Haftreibung
F_{hys}	Krafthysterese
F_m	Mittlere Muskelkraft
F_M	Gesamte Muskelkraft
$F_{M,st}$	Statischer Anteil der Muskelkraft
$F_{M,hys}$	Hysterese der Muskelkraft
F_R	Reibkraft
F_U	Kraft zur Repräsentation der Unsicherheiten
g	Erdbeschleunigung
g	Gravitationsvektor
G	Gravitationsterm
h	Vektor der Beobachterverstärkungen
H	Beobachter-Verstärkungsmatrix
IVC	Inverse Ventilcharakteristik
$J_{A,red}$	Reduziertes Massenträgheitsmoment der Oberarme des Parallelroboters
J_{lj}, J_{rj}	Massenträgheitsmomente der Rollen
J_{P1}, J_{P2}	Massenträgheitsmomente der Unterarme des Parallelroboters
${oldsymbol{j}}_R$	Jakobimatrix der Rotation
$oldsymbol{J}_T$	Jakobimatrix der Translation
k	Anzahl der Rollen
\boldsymbol{k}	Vektor der Zentrifugal- und Coriolisanteile
k_1, k_2, k_3	Konfigurationsparameter
l_A	Oberarmlänge des Parallelroboters
l_P	Unterarmlänge des Parallelroboters
$\Delta \ell_M$	Kontraktionslänge des pneumatischen Muskels
M	Massenmatrix
m	Reduzierte Masse der High-Speed-Linearachse

Abkürzung Bedeutung

m_A	Masse der Oberarme des Parallelroboters
m_E	Endeffektormasse
m_{P1}, m_{P2}	Massen der Unterarme des Parallelroboters
m_S	Schlittenmasse
m_{MFl}, m_{MFr}	Massen der Anbindungsplatten
\dot{m}_M	Massenstrom
\dot{m}_M	Massenstrom in den Muskel bzw. aus dem Muskel
n	Polytropenexponent
p_1, p_2	Vor- und Gegendruck an einem pneumatischen Widerstand
p_m	Mittlerer Muskeldruck
p_M	Muskeldruck
p_V	Versorgungsdruck
q_1, q_2	Gelenkwinkel
$oldsymbol{Q}_{nk}$	Vektor der nichtkonservativen Momente
r	Radius
$oldsymbol{r}_E$	Endeffektorposition in der xz -Ebene
R.D.	Reale Differentiation
R_L	Gaskonstante von Luft
T	Kinetische Energie
T_0	Temperatur im technischen Normzustand
T_M	Temperatur der Luft im Muskel
T_S	Abtastzeit
T_U	Umgebungstemperatur
U	Potentielle Energie
U_V	Ventilspannung
$V(\cdot)$	Ljapunow-Funktion
VC	Ventilcharakteristik
V_M	Muskelvolumen
v_S	Stribeckgeschwindigkeit
x_E	Endeffektorposition in x-Richtung
z_E	Endeffektorposition in z-Richtung
z_S	Schlittenposition
κ	Isentropenexponent
ρ	Dichte
ρ_0	Dichte im technischen Normzustand
ρ_M	Dichte der Luft im Muskel
$ au_1$, $ au_2$	Antriebsmomente des Parallelroboters
$\tau_{U1}, \ \tau_{U2}$	Momente zur Repräsentation der Unsicherheiten des Parallelroboters
$\psi(\cdot, \cdot, \cdot)$	Formgebungsfunktion der Hysterese
$\Psi\left(\cdot,\cdot ight)$	Durchflussfunktion