Universität der Bundeswehr München Institut für Wasserwesen Wasserwirtschaft und Ressourcenschutz

Mitteilungen Heft 118 / 2013

Prozessorientierte Modellierung der Abflussbildung und -konzentration auf verschlämmungsgefährdeten landwirtschaftlichen Nutzflächen

Dr.-Ing. Florian Winter

München 2013

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar

Mitteilungen / Institut für Wasserwesen; Heft 118

Herausgeber:

Univ.-Prof. Dr.-Ing. Markus Disse Wasserwirtschaft und Ressourcenschutz Univ.-Prof. Dr.-Ing. F. Wolfgang Günthert Siedlungswasserwirtschaft und Abfalltechnik Univ.-Prof. Dr.-Ing. Andreas Malcherek Hydromechanik und Wasserbau

Institut für Wasserwesen Universität der Bundeswehr München Werner-Heisenberg-Weg 39, 85577 Neubiberg

Tel: +49 (0)89/6004-3375 (Karina Myslik)

Fax: +49 (0)89/6004-3858 http://www.unibw.de/ifw/WWR

Satz: Institut für Wasserwesen der Universität der Bundeswehr München

85577 Neubiberg

Copyrigth: Shaker Verlag, Aachen 2013

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany

Druck gefördert aus Haushaltsmitteln der Universität der Universität der Bundeswehr München

ISBN 978-3-8440-2242-1

Shaker Verlag GmbH * Postfach 101818 * 52018 Aachen

Telefon: 02407 / 9596-0 * Telefax 02407 / 9596-9 Internet: www.shaker.de * E-Mail: info@shaker.de

Vorwort zur Dissertation von Florian Winter

In den letzten Jahrzehnten sind vermehrt Sturzfluten zu beobachten, die in kleinen steilen Einzugsgebieten große Schäden anrichten. Der quantitativen Beschreibung und Vorhersage derartiger Extremabflüsse kommt eine besondere Bedeutung zu, um rechtzeitig Evakuierungsmaßnahmen einzuleiten oder durch Vorsorgemaßnahmen den Schaden zu begrenzen. Bis heute können allerdings Höhe und Verlauf von Hochwasserwellen, die aus erosiven Starkniederschlägen resultieren, nicht ereignisbezogen vorhergesagt werden. Es ist auch nicht bekannt, in welcher Größenordnung landwirtschaftlich unterschiedliche Bearbeitungsverfahren (konservierende versus konventioneller Bodenbearbeitung) den Hochwasserverlauf auf unterschiedlichen Skalen verändert.

Hierzu leistet Herr Dr.-Ing. Florian Winter in der vorliegenden Dissertation einen Beitrag. Er bearbeitet die in der (natur-) wissenschaftlichen Forschung noch immer ungelöste Fragestellung, unter welchen System- und Randbedingungen Ackerböden verschlämmen können und wie sich die veränderten Bodeneigenschaften auf die Abflussbildung und –konzentration auswirken. Die Beantwortung dieser Frage würde neben dem wissenschaftlichen Erkenntnisgewinn auch in praktischer Hinsicht Lösungsansätze liefern wie die bessere Bestimmung der kolloidal gebundenen Stoffeinträge in die Gewässer oder eine Verbesserung der Hochwasservorhersage nach Starkniederschlägen.

Zunächst wertet Herr Winter aus verschiedenen Datensätzen abgeschlossener Forschungsvorhaben 726 Beregnungsexperimente mit insgesamt 24384 auf Abflussmessungen 209 Bodenarten statistisch Die erstellte aus. Beregnungsdatenbank beinhaltet ferner 20 invariante und 3 variable Bodeneigenschaften, 4 Regen- sowie 4 Landnutzungseigenschaften. Aus diesem Datenfundus gelingt es Herrn Winter, statistische Beziehungen Verschlämmung bzw. Infiltration aufzustellen und anhand eines modifizierten Horton-Ansatzes in das bekannte hydrologische Modell WaSiM zu integrieren. WaSiM wird zusätzlich um die Module 2-dimensionaler Oberflächenabfluss und Re-Infiltration erweitert.

Anschließend stellt Herr Winter das erweiterte hydrologische Modell für die Forschungsgebiete Scheyern (nördlich von München) und Weiherbach (nordöstlich von Karlsruhe) auf. Bei der Modellierung des Weiherbaches mit einer Einzugsgebietsgröße von 3,5 km² (Pegel Menzingen) zeigt sich allerdings, dass insbesondere das Verschlämmungsmodul in seiner jetzigen Parametrisierung ungeeignet ist, die Abflussverschärfung aufgrund der Verschlämmung realistisch abzubilden. Die erosiven Flächen können zwar realistisch modelliert werden, die simulierten Abflüsse sind dagegen nicht plausibel. Das bedeutet allerdings kein Negativum der Dissertation. Im Gegenteil ist es ein wissenschaftlich wertvolles

Ergebnis, dass es trotz sorgfältigster Datenanalyse von Beregnungsversuchen auf der Plotskala nicht möglich ist, die entsprechenden Regressionsformeln für das *Horton-Modell* auf die (untere) Mesoskala zu übertragen. Insofern ist es nur folgerichtig, dass Florian Winter in seinen Schlussfolgerungen dazu rät, "eine Vereinfachung des Modells der weiteren Detaillierung der einzelnen Prozesse vorzuziehen".

Möchte man in der Prozessforschung Fortschritte erzielen, müssen neue Messkonzepte entwickelt werden, die die Prozesse abbilden können. Diese Erkenntnisse sind dann durch Abstraktionen auf weniger intensiv beprobte Einzugsgebiete zu übertragen.

Die Arbeit deckt ein äußerst breites Spektrum ab – von sehr umfangreicher statistischer Analyse experimenteller Daten bin hin zu komplexen Abflussbildungsund Abflusskonzentrationsmodellierungen mit physikalisch basierten Modellen. Die besondere Leistung von Dr.-Ing. Florian Winter besteht darin, dass er mit äußerster Sorgfalt die vorhandenen experimentellen Daten statistisch analysiert hat und dann schlussfolgert, dass trotz der sehr guten Datensituation keine allgemein gültigen, belastbaren Beziehungen für die Verschlämmung von Böden und ihr Einfluss auf die Abflussbildung und –konzentration gefunden werden können. Dieses Ergebnis ist meines Erachtens wertvoller als viele andere Untersuchungen, die zwar gute Anpassungen dokumentieren, welche aber lediglich auf ein (willkürliches) "Datenfitting" für ihr spezielles Untersuchungsgebiet beruhen.

Die Arbeit von Florian Winter kann folgende Doktoranden ermutigen, weiter an diesem spannenden und wichtigen Thema zu forschen und insbesondere neue Erkenntnisse in der Skalenproblematik verschlämmungsgefährdeter Einzugsgebiete zu erlangen.

froler Ine Prof. Dr.-Ing.Markus Disse

Prozessorientierte Modellierung der Abflussbildung und –konzentration auf verschlämmungsgefährdeten landwirtschaftlichen Nutzflächen

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

Universität der Bundeswehr München Fakultät für Bauingenieurwesen und Umweltwissenschaften

Prof. Dr.-Ing. Markus Disse (Erstprüfer)

Prof. Dr. agr. Karl Auerswald (Zweitprüfer)

vorgelegt von **Dipl.-Hyd. Florian Winter** München 2013

Universität der Bundeswehr München Fakultät für Bauingenieurwesen und Umweltwissenschaften

Thema der Dissertation Prozessorientierte Modellierung der Abflussbildung und –konzentration

auf verschlämmungsgefährdeten landwirtschaftlichen Nutzflächen

Verfasser Florian Winter

Promotionsausschuss

Vorsitzender Prof. Dr.-Ing. Christian Jacoby

Universität der Bundeswehr München Institut für Verkehrswesen und Raumplanung

Professur für Raumplanung und Mobilität

1. Berichterstatter Prof. Dr.-Ing. Markus Disse

Universität der Bundeswehr München

Institut für Wasserwesen

Professur für Wasserwirtschaft und Ressourcenschutz

2. Berichterstatter Prof. Dr. agr. Karl Auerswald

Technische Universität München

Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und

Umwelt

Lehrstuhl für Grünlandlehre

Tag der Prüfung 13.06.2013

Mit der Promotion erlangter akademischer Grad:

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

Neubiberg, den 28.06.2013

Danksagung

Diese Dissertation entstand während meiner Zeit als Wissenschaftlicher Mitarbeiter am Institut für Wasserwesen der Universität der Bundeswehr München.

Danken möchte ich in erster Linie Prof. Dr.-Ing. Markus Disse für die Ermöglichung dieser Dissertation, für seine Betreuung während meiner Zeit am Institut und für die hilfreichen Diskussionen. In meinen Jahren am Lehrstuhl für Wasserwirtschaft und Ressourcenschutz konnte ich viele Erfahrungen Mitarbeit an Lehrveranstaltungen des Masterstudiengangs Bauingenieurwesen Umweltwissenschaften und in verschiedenen Forschungsprojekten sammeln, die mir wertvolle Erfahrungen und Erkenntnisse auch zum Verfassen dieser Arbeit einbrachten.

Weiterhin möchte ich Prof. Dr. agr. Karl Auerswald danken, der mir immer wieder neue Einblicke in das wissenschaftliche Arbeiten, den Umgang mit Daten und der Interpretation der Ergebnisse geben konnte, von dem ich viel für die Bearbeitung von wissenschaftlichen Problemen gelernt habe und der das Zweitreferat dieser Dissertation übernahm. Prof. Dr. Peter Fiener danke ich für die Unterstützung bei der Sichtung der Beregnungsdatenbank und seine Hinweise zur Analyse der Daten.

Danken möchte ich auch dem Prüfungsausschuss des Promotionsverfahrens, vor allem ihrem Vorsitzenden Prof. Dr.-Ing. Christian Jacoby.

Im Laufe der Jahre habe ich mit vielen Kollegen am Institut und am Lehrstuhl zusammengearbeitet, obwohl das Projekt, das dieser Dissertation zugrunde liegt, immer eine Einzelkämpferarbeit war. Für eine tolle Atmosphäre und Unterstützung möchte ich allen ehemaligen Kollegen am Lehrstuhl und am Institut danken.

Des Weiteren ist man als Doktorand auch immer von der Zuarbeit junger Wissenschaftler in Form einer Prüfungsarbeit oder wissenschaftlichen Hilfstätigkeiten abhängig. Deswegen möchte ich meinen HiWis Simon, Christian und Jochen danken.

Für die umfangreiche Hilfe mit WaSiM danke ich dem Modellentwickler Jörg Schulla, der mit seinen zahlreichen Hinweisen und umfangreichen Erklärungen zu stets neuen Erkenntnissen und zum Verständnis der Modellstruktur beigetragen hat.

Zuletzt gilt mein besonderer Dank meinen Eltern Eleonore und Bernhard Winter sowie meinem Bruder Bastian, außerdem meinen Freunden, die mich privat großartig unterstützten und damit ihren Beitrag zum Gelingen dieser Arbeit geleistet haben.

Kurzfassung

Die Bewirtschaftungsform und damit die Bodenbearbeitung haben umfangreiche Auswirkungen auf die Abflussbildung und -konzentration. Durch die Umstellung von der konventionellen konservierenden Bodenbewirtschaftung ergeben sich positive Effekte im Hinblick auf den Wasserrückhalt in der Fläche: Eine ganzjährig angestrebte Bodenbedeckung (Anbau einer Zwischenfrucht, Belassen von Ernterückständen auf der Ackerkrume) verringert Verschlämmungsneigung der Böden, verbessert das Mikroklima in Bodennähe und erhöht die Infiltrationsleistung. Pflanzenreste auf dem Boden erhöhen den Fließwiderstand und verringern die Geschwindigkeit des Oberflächenabflusses. Dieser kann durch Re-Infiltration auf ungesättigten Flächen in den Boden gelangen. Dadurch erhöhen sich wiederum die Speicherwirkung des Bodens sowie der verfügbare Wasservorrat für die Feldfrucht.

Das Ziel der vorliegenden Arbeit ist es, den Einfluss von Landnutzung und -bewirtschaftung auf den Direktabfluss in der unteren Mesoskale räumlich hoch auflösend mit Hilfe eines physikalisch-basierten Wasserhaushalts-Modells abzubilden. Damit sollen die Möglichkeiten der Abflussreduzierung durch Flächenneugestaltung, infiltrationsfördernde Bewirtschaftung und Etablierung lokaler Maßnahmen erfasst werden.

Es wird eine Datenbank vorgestellt, die aus den Beregnungsexperimenten mehrerer Forschergruppen besteht und sowohl die Abflussganglinien der einzelnen Experimente in ihrem zeitlichen Verlauf als auch die zeit-invarianten (Bodeneigenschaften) wie variablen (Beregnungs- und Bearbeitungseigenschaften) Randbedingungen zu jedem einzelnen Beregnungsversuch sowie die punktuellen Messergebnisse (time to ponding, time to runoff) zusammenfasst.

Datensätze der Beregnungsdatenbank werden umfangreich analysiert: Optimierungsalgorithmen (Simulated Annealing) werden aus den gemessenen Infiltrationsraten der einzelnen Versuche die besten Parameter für ein modifiziertes Infiltrationsmodell nach HORTON ermittelt. Diese optimierten Parameter werden mit den Boden- und Bearbeitungseigenschaften der Beregnungsexperimente verknüpft und durch statistische Regressionsmethoden geschätzt. Es wird ein einfach anzuwendendes multiples Regressionsmodell entwickelt, das die infiltrationssteuernden Parameter der modifizierten HORTON-Gleichung aus allgemein verfügbaren Daten hinreichend gut schätzen kann.

Das hydrologische Modellierungssystem WaSiM wird um zwei Komponenten erweitert: um ein Verschlämmungsmodul, das dem Modul zur Wasserbewegung in der ungesättigten Zone vorangeschaltet ist und um ein Modul zur Abflusskonzentration des Oberflächenabflusses nach dem Ansatz der kinematischen Welle.

Die Modellerweiterungen und die zugrundeliegenden Prozessbeschreibungen werden auf verschiedenen Skalen angewendet: Auf der Plotskale können einzelne Beregnungsversuche aus der Datenbank besser simuliert werden als ohne die Modellerweiterung. Durch die konservierende Bodenbearbeitung und die erosionsverringernde Fruchtfolge auf den Ackerflächen (Hangskale) des Klosterguts Scheyern kann im Modell ein hoher Abflussanteil an Zwischenabfluss nachgewiesen werden, der durch die erhöhte

Ausbildung stabiler Makroporen und als zeitlich verzögerte Abflusskomponente größeren Anteil am Gesamtabfluss hat. Bei der Simulation der konventionellen Bodenbearbeitung auf der *unteren Mesoskale* (Weiherbachgebiet) können bei einzelnen Starkregenereignissen räumlich detailliert verschlämmungsgefährdete Bereiche ausgewiesen werden.

Abstract

Tillage practices and thus soil cultivation have significant impacts on runoff generation and concentration processes. By changing conventional tillage towards conservational tillage positive effects regarding natural water retention can be achieved. In attempting a constant soil coverage throughout the year (by catch crop cultivation and mulch tillage) the susceptibility to surface crusting is reduced, the microclimate at the soil surface is improved and hence infiltration is enhanced. Crop remains on the soils surface increase flow resistance and decrease flow velocity of the surface runoff, so that runoff can enter the soil layer by re-infiltration on unsaturated areas. The retention capacity of the soil and thus the available water storage for field crops is improved.

The objective of this work is to simulate the impacts of land use and tillage practices on surface runoff in the lower mesoscale in high spatial resolution by a physically based water balance model. Thereby the potential of runoff reduction by reallocation of arable land, soil management promoting infiltration capacity and establishment of local measures can be determined.

A database of rainfall simulations on arable fields is introduced that combines the data of several research groups: the hydrographs of the experiments, the time invariant (soil properties) and variable (sprinkler and tillage properties) boundary conditions of every single experiment and the punctual measurements (time to ponding, time to runoff) are summarized.

The data sets of the rainfall simulation database are analyzed extensively. By means of optimization algorithms (Simulated Annealing) the optimized parameters of a modified HORTON type infiltration model are determined from the measured infiltration rates. The optimized parameter sets are combined with the boundary conditions of the experiments (soil and tillage properties) and estimated by statistical regression methods. An easily applicable multiple regression model is developed that is able to sufficiently estimate the infiltration parameters of the modified HORTON equation from commonly available data.

The hydrological modeling system WaSiM is extended by two components: a surface sealing module that precedes the water movement into the unsaturated zone and a surface routing module using the kinematic wave approach for surface runoff.

The model extensions and the underlying mathematical process descriptions are applied on several spatial scales: On the plot scale single experiments from the rainfall simulation database can predict hydrographs better than without the model extensions. Conservational tillage and crop rotation reducing erosion is modeled on the slope scale (arable fields on the Scheyern experimental farm) showing a high ratio of interflow in total runoff as delayed runoff component, thus representing the formation of stable macropores. Conventional tillage is modeled on the lower mesoscale (Weiherbach catchment) indicating areas prone to surface sealing during high precipitation events in spatial detail.

Inhaltsverzeichnis

D	anksagur	ing	v
Kı	urzfassun	ng	vii
Α	bstract		ix
In	haltsver	rzeichnis	xi
		zsverzeichnis	
		rerzeichnis	
16			
1		Einleitung	1
	1.1	Erfassung und Modellierung hydrologischer Teilprozesse bei der Abflussbildung und –ko	nzentration
		auf der Mikroskale	1
	1.2	Veranlassung und DFG-Projekt	2
	1.3	Aufbau der Arbeit	3
2		Grundlagen	5
		Landwirtschaft und Bewirtschaftungsformen	
	2.1.1		
	2.1.2		
	2.1.3		
	2.1.4		
		Infiltration und Abflussbildungsprozesse	
	2.2.1		
		2.1.1 Exponentialmodell nach Horton	
		.2.1.3 Infiltration aus der Richards-Gleichung	
	2.2.2		
		Bodenwasserbewegung	
3	:	Stand der Wissenschaft	17
	3.1	Abflussgeschehen auf landwirtschaftlich genutzten Flächen	17
	3.1.1	1 Verschlämmung und Wassererosion	20
	3.1	.1.1.1 Teilprozesse der Oberflächenverschlämmung	
	3.1	.1.1.2 Einflussfaktoren	24
	3.1.2	2 Abflusskonzentration	28
	3.1.3	3 Einfluss der Bewirtschaftungsform	30
	3.2	Modellierungsansätze	32
	3.2.1	1 Modellierung der Abflussbildung auf landwirtschaftlichen Flächen	32
	3.2.2	2 Modellierung der Verschlämmung	33
	3.2.3	3 Modellierung der Bodenbearbeitung	37
	3.2.4	4 Modellierung der Abflusskonzentration	38
	3.3	Skalenabhängigkeit der Prozesse der Abflussbildung und –konzentration	40
	3.3.1	1 Plotskale	41
	3.3.2	2 Hangskale	41
	3.3.3	3 Einzugsgebietsskale	42

4	N	lethodik	45
	4.1 Ex	xperimentelle Daten	45
	4.1.1	Infiltrationsversuche	45
	4.1.2	Beschreibung der Beregnungsdatenbank	46
	4.2 G	rundlagen der Modellerweiterung zur Abflussbildung und –konzentration auf landwirtschaftlich	n
	ge	enutzten Flächen	52
	4.2.1	Modellierung der dynamischen Verschlämmung	54
	4.2.2	Abflusskonzentration auf der Bodenoberfläche	
	4.3 W	/aSiM	
	4.3.1	Modellkonzept und -eignung	
	4.3.2	Datenbedarf	
	4.3.3	Relevante Modellansätze	
	4.3.4	Modellerweiterungen	
	4.3.	ζ	
	4.3.	(, , , , , , , , , , , , , , , , , , ,	
	4.4 P	arameteroptimierung	78
5	В	eschreibung der Untersuchungsgebiete	83
	5.1 Sc	chevern	83
	5.1.1	Klimatische Verhältnisse	
	5.1.2	Geologie und Böden	
	5.1.3	Gewässer und Grundwasser	
	5.1.4	Landnutzung	
	5.1.5	Abflussmessungen	
	5.1.6	Datengrundlage für die Modellierung	
	5.1.7	Bodenparametrisierung	
	5.1.8	Parametrisierung der Landnutzung	
	5.2 W	/eiherbach	95
	5.2.1	Klimatische Verhältnisse	97
	5.2.2	Geologie und Böden	97
	5.2.3	Gewässer und Grundwasser	99
	5.2.4	Landnutzung	99
	5.2.5	Abflussereignisse	. 100
	5.2.6	Datengrundlage für die Modellierung	. 101
	5.2.7	Bodenparametrisierung	. 101
	5.2.8	Parametrisierung der Landnutzung	. 102
6	F	mpirische Analysen der experimentellen Daten	. 105
•			
		nalyse der Beregnungsdatenbank	
	6.1.1	Bodenarten in der Beregnungsdatenbank	
	6.1.2	Bildung von Abfolgen	
	6.1.		
	6.1.		
	6.1.3	Schätzung der Infiltrationsparameter	
		egressionsmodelle für deterministische Ansätze der verschlämmungsgesteuerten Infiltration	
	6.2.1 6.2.2	Hauptkomponentenregression	
	6.2.2	Multiples lineares Modell für modifizierten Horton-Ansatz	
	6.2.4	Überprüfung des Regressionsmodells nach Zimmermann et al. (2008)	
	0.2.4	ober pratatibaes rebressionsmodens nach zimmermann et al. (2000)	

	6.2.5 Zu	sammenfassung Regressionsmodelle	133
	6.3 Statis	stisches Abflussmodell der Beregnungsversuche	134
	6.3.1 V	orgehensweise	134
	6.3.2 Al	bhängigkeit des Abflussvolumens Q von Randbedingungen	136
	6.3.3 Sc	hätzung des Anfangsverlustes P _{tR}	137
	6.3.4 G	esamtmodell und Diskussion	139
	6.3.5 Zu	sammenfassung Statistisches Abflussmodell	143
7	Mod	ellierung mit WaSiM	145
	7.1 Mod	ellierung der ungesättigten Zone in WaSiM	145
	7.1.1 Al	oflussbildung	145
	7.1.2 V	erifizierung des Richards-Modells für Bodenfeuchteprofile	149
	7.2 Verif	izierung der Regressionsmodelle in WaSiM	151
	7.2.1 M	lodellaufbau	152
	7.2.2 M	lodellierung von Beregnungsversuchen	152
	7.3 Mod	ellierung der konservierenden Bodenbearbeitung in WaSiM	156
	7.3.1 M	lodellaufbau	156
	7.3.2 Ei	nzelereignisse auf integriert bewirtschafteten Flächen	159
	7.3.3 Zu	ısammenfassung	165
	7.4 Mod	ellierung der konventionellen Bodenbearbeitung in WaSiM	166
	7.4.1 M	lodellaufbau	166
	7.4.2 Er	eignisbasierte Modellierung	169
	7.4.2.1	Kalibrierung ohne Modellerweiterungen	169
	7.4.2.2	Schrittweises Zuschalten der Modellerweiterungen	172
	7.4.2.3	Kalibrierung mit Modellerweiterungen	175
	7.4.3 Kd	ontinuierliche Modellierung	181
	7.4.4 Sz	enario: Konservierende Bearbeitung im Weiherbach	185
	7.4.5 Zu	usammenfassung	188
8	Disku	ussion	189
	8.1 Mod	ellerweiterung	189
		erschlämmungsmodul	
		oflusskonzentration	
		nproblematik	
		iumliche Auflösung	
		eitliche Auflösung	
		cherheiten der Modellierung und der Parametrisierung	
		ellkomplexität	
a		mmenfassung und Ausblick	
		chnis.	
	Ü		215
-	nhang A	Ausschnitt aus der Steuerdatei mit der Bodenparametrisierung für das Verschlämmungsmodul	217
A	nhang B	Ausschnitt aus der Steuerdatei mit der Bodenparametrisierung für Surface Routing	219
	nhang C	Beschreibung des C++ Parsers in der WaSiM-Steuerdatei	
	nhang D	Darstellung der Regressionsmodelle für die einzelnen Beregnungsversuche	
-			

Abbildungsverzeichnis

Abb. 2-1: Vergleich der pF-Kurven nach Brooks & Corey und VAN-GENUCHTEN für einen Schluffboden	16
Abb. 3-1: Schema der Abhängigkeit der Abflussbildung von der Landnutzung	18
Abb. 3-2: Typische Entwicklung der Bodenbedeckung bei Feldfrüchten in Mitteleuropa, saisonale Verteilung	g des
Niederschlags und der Regenintensität für den Standort Scheyern (nach Fiener et al. 2011a)	19
Abb. 3-3: Prinzipskizze des Verschlämmungsprozesses: Durch die mechanische Wirkung der Regentropfen	
werden Bodenaggregate zerstört, lagern sich in gröberen Poren ab und verursachen eine Abtrennung	der der
Infiltrationswege in die Bodenmatrix sowie die Makroporen	21
Abb. 3-4: Teilprozesse und Faktoren der Oberflächenverschlämmung und der Abflussbildung	
Abb. 4-1: Beregnungsanlagen der einzelnen zusammengefassten Messkampagnen	50
Abb. 4-2: Übersichtskarte der Untersuchungsplots der einzelnen Teildatensätze SY, WB, FS, FB und WS	
Abb. 4-3: Fließrichtungen in WaSiM von der mittleren Rasterzelle ausgehend	
Abb. 4-4: Prinzip und Beispiel für multiple Fließrichtungen mit Gewichtungen	58
Abb. 4-5: Modellstruktur von WaSiM	
Abb. 4-6: Flussdiagramm der Abflussbildung und -konzentration in WaSiM bis Version 8.1.1	
Abb. 4-7: Flussdiagramm der Abflussbildung und -konzentration in WaSiM ab Version 8.1.1	
Abb. 4-8: Darstellung des SCE-Algorithmus im 2-dimensionalen Fall	
Abb. 5-1: Luftbild vor und nach der Umstellung der Bewirtschaftungsform 1991	
Abb. 5-2: Klimadiagramme der beiden Stationen B01 und B02 auf der Klostergut Scheyern	
Abb. 5-3: Flächennutzung und Kleineinzugsgebiete auf dem Geländes des Forschungsguts Scheyern	
Abb. 5-4: Einzugsgebiete auf dem Kehrfeld des Klostergutes Scheyern (integrierte Bewirtschaftung)	
Abb. 5-5: Einteilung der Ackerschläge auf die Einzugsgebiete und Lage der begrünten Abflussmulde (Grasse	
Waterway) auf dem Klostergut Scheyern	
Abb. 5-6: Gemessene Abflüsse der einzelnen Ereignisse in [mm] auf den Einzugsgebieten des Kehrfeldes	
Abb. 5-7: Standorte der Hood Infiltrometer Messungen auf dem Kehrfeld in Scheyern und die	
Bodenklassifikation des oberen Bodenhorizonts für die Einzugsgebiete E01-E07; Hintergrund:	
Standortkundliche Bodenkarte von Bayern (1:25000)	93
Abb. 5-8: Übersichtskarte über das Einzugsgebiet des Weiherbachs mit Höhenlinien und meteorologischen	
hydrologischen Messstationen	
Abb. 5-9: links: Blick über das landwirtschaftlich geprägte Weiherbachgebiet von den Kuppen im Osten in	
Richtung Süd-Westen; rechts: das Gerinne des Weiherbaches direkt oberhalb des Pegels Menzingen	96
Abb. 5-10: Klimadiagramm der Station WB0 im Einzugsgebiet des Weiherbachs (Zeitraum 1990 - 1996) und	
Jahresniederschläge von 1991 - 1996	
Abb. 5-11: Bodentypen im nördlichen Weiherbachgebiet	98
Abb. 5-12: Vegetationszeiten der Haupt- und Zwischenfrüchte im Weiherbachgebiet (verändert nach Plate	
Zehe 2008, Ritz 2000)	. 103
Abb. 6-1: Verteilung der Bodenartenhauptgruppen (links); Anteile der Bodenart an den	
Verschlämmungsneigungsklassen aus KA5 (rechts); n=209	106
Abb. 6-2: Anteil der Bodenarten in der Beregnungsdatenbank	. 106
Abb. 6-3: Bodenartendreieck nach KA5 (links) und der US Soil Classification (rechts)	. 107
Abb. 6-4: Beobachtungswerte der Versuche Nr. 41 und 42 aus dem Teildatensatz Scheyern mit	
Beregnungspause von 30 min	. 108
Abb. 6-5: Aufbereitung des Beregnungsversuches Nr. 41 und 42 des Teildatensatzes Scheyern, aufgetragen	
Infiltrationsrate auf die kumulierte effektive kinetische Energie Ekin	109
Abb. 6-6: Zusammenhang zwischen den beobachteten Größen bei einzelnen Abfolgen	
Abb. 6-7: Scree-Plot der Hauptkomponenten (PCA)	. 112
Abb. 6-8: Ladungen der ersten 6 Hauptkomponenten (PC)	
Abb. 6-9: Biplot von PC1 gegen PC2	. 113

Abb.	6-10: Kerndichteschätzungen der Infiltrationsparameter nach 100 Optimierungsläufen für einzelne	
	Sequenzen mittels Simulated Annealing am Beispiel SEQ=3900214	15
Abb.	$\hbox{6-11: Beste \"{U}bereinstimmung der beiden Optimierungsalgorithmen Simulated Annealing (SA) und Non-leibereinstimmung der beiden Optimierung (SA) und Non-leibereinstimmung (SA) und Non-leibereinstimm$	
	Linear Least Squares (NLS) am Beispiel der SEQ=3900214	15
Abb.	6-12: Kerndichteschätzung und Box-Whisker-Plots der optimierten Horton-Variablen f_0 , f_e und c_v für n=2:	
	Sequenzen in der HorKal-Datenbank	16
Abb.	6-13: Beziehungen zwischen der Endinfiltrationsrate und Boden- und Bearbeitungskenngrößen (n=213)	
		18
Abb.	6-14: Simulierte (inkl. Konfidenzintervall) und optimierte Werte für die Multiple Regression und	
	Kerndichteverteilung der Fehler für f_e	19
Abb.	6-15: Der Abflussbeiwert wird zu einem Teil durch die Verschlämmungsneigung c_{ν} erklärt (links); Stabile	
	Bodenaggregate hoher Dichte weisen eine niedrigere Verschlämmungsneigung auf (rechts) 1	20
Abb.	6-16: Beziehungen zwischen der Verschlämmungsneigung und Boden- und Bearbeitungskenngrößen	
	(n=213)	20
Abb.	6-17: Simulierte (inkl. Konfidenzintervall) und optimierte Werte für die Multiple Regression und	
	Kerndichteverteilung der Fehler für c_{v}	21
Abb.	6-18: Die Neigung der Infiltrationskurve bestimmt bei der Horton-Funktion die physikalisch schwer zu	
	erfassende Anfangsinfiltrationsrate f_0 (links); kurz nach der Bodenbearbeitung zeigen sich höhere	
	Anfangsinfiltrationsraten, deren Streuung mit der Zeit abnimmt (rechts)	22
Abb.	6-19: Simulierte (inkl. Konfidenzintervall) und optimierte Werte für die Multiple Regression und	
	Kerndichteverteilung der Fehler für f_0	23
Abb.	6-20: BoxPlot der RMSE der optimierten Experimente, sowie den geschätzten Experimenten aus des	
	Kalibrierdatensatzes (HorKal) sowie des Validierungsdatensatzes (HorVal)	
Abb.	6-21: Simulierte und optimierte Infiltrationsverläufe einzelner Sequenzen aus der Beregnungsdatenbank	
		25
Abb.	6-22: Kerndichteschätzung und Box-Whisker-Plots bei Anwendung des Approximationsmodells 1 nach	
	SCHRÖDER (2000) für n=169 Sequenzen in der <i>HorKal-</i> Datenbank	28
Abb.	6-23: Kerndichteschätzung und Box-Whisker-Plots bei Anwendung des Approximationsmodells 2 nach	
	SCHRÖDER (2000) für n=169 Sequenzen in der <i>HorKal-</i> Datenbank	29
Abb.	6-24: Box-Whisker-Plots der RMSE bei den optimierten Datensätzen (n=213) und des	
	Approximationsmodells 2 nach SCHRÖDER (2000)	
Abb.	6-25: Kerndichteschätzung und Box-Whisker-Plots bei Anwendung der neu geschätzten Koeffizienten von	
	Approximationsmodell 1 nach SCHRÖDER (2000) für n=169 Sequenzen in der HorKal-Datenbank	
Abb.	6-26: Kerndichteschätzung und Box-Whisker-Plots bei Anwendung der neu geschätzten Koeffizienten von	
	Approximationsmodell 2 nach SCHRÖDER (2000) für n=169 Sequenzen in der HorKal-Datenbank	
Abb.	6-27: Box-Whisker-Plots der RMSE bei den optimierten Datensätzen (n=213) und der Anwendung der ne	
	geschätzten Koeffizienten der Approximationsmodelle nach SCHRÖDER (2000)	31
Abb.	6-28: Kerndichteschätzung und Box-Whisker-Plots bei Anwendung des Regressionsmodells nach	
	ZIMMERMANN et al. (2008) für n=213 Sequenzen in der HorKal-Datenbank	32
Abb.	6-29: Box-Whisker-Plots der RMSE bei den optimierten Datensätzen (n=213) und der Anwendung des	
	Regressionsmodells nach ZIMMERMANN et al. 2008.	
Abb.	6-30: Darstellung der simulierten Infiltrationsverläufe nach dem Regressionsansatz von ZIMMERMANN et a	
	2008 mit dem niedrigsten bzw. höchsten RMSE und dem optimierten Verlauf	
Abb.	6-31: Typischer Abflussverlauf über das beregnete Volumen (links); Kerndichteschätzung des kumulierte	
	Niederschlags [mm] zum Zeitpunkt t _R (rechts)	35
Abb.	6-32: Ergebnisse der linearen Modelle auf das Abflussvolumen nach 30 mm Niederschlag und deren	
	Residuen	36
Abb.	6-33: Zusammenhang zwischen einzelnen Einflussfaktoren und P _{tR} bei allen Trockenläufen der	
	Beregnungsdatenbank (n = 327)	38

Abb.	6-34: Simulierte und gemessene Werte für die Gesamtanpassung und Kerndichteverteilung der Fehler für
	Q
Abb.	$6\text{-}35\text{:} Simulierte \ Abflussvolumina} \ Q_{P_X}\left(P_{20} - P_{60}\right) \\ f \ddot{u}r \ verschiedene \ Parameterkombinationen$
Abb.	6-36: Simulierte und gemessene Abflussraten verschiedener Experimente auf derselben Parzelle (SOIL= 5019)
Abb.	7-1: Gemessene und simulierte Abflussraten bei variierender Mächtigkeit der Berechnungsschichten in WaSiM bei einer Beregnungsintensität von I = 34 mm/h147
Abb.	7-2: Abhängigkeit der Diskretisierung der Berechnungsschichten in WaSiM bei konstanter Regenintensität auf den Abflussbeginn $t_{\rm R}$
Abb.	7-3: Abhängigkeit der Diskretisierung der Berechnungsschichten in WaSiM bei konstanter Regenintensität auf den Abflussbeiwert ψ
Abb.	7-4: Bodenfeuchteprofile für Vorläufe aus dem Teildatensatz WB für Simulationen mit HYDRUS1D und WaSiM
Abb.	7-5: Vergleich des Vordringens der Feuchtefront in den Boden bei einer Simulationsdauer von einem Monat
Abb.	7-6: Ergebnisse der Optimierung der VAN-GENUCHTEN-Parameter für die Bodentypen der Beregnungsversuche des Teildatensatzes WB
Abb.	7-7: pF-Kurven der oberen Horizonte beider Bodentypen der Standortmodelle, deren Parameter im Modelllauf ohne Erweiterung innerhalb ihrer Parametergrenzen (grau) optimiert wurden; initiale Werte sind dick dargestellt, minimale und maximale pF-Kurven gestrichelt
Abb.	7-8: Beispielhafte Ergebnisse der Optimierung der VAN-GENUCHTEN-Parameter der Böden bei der Simulation von Beregnungsversuchen in WaSiM ohne Modellerweiterung
Abb.	7-9: Beispielhafte Ergebnisse der Optimierung der Koeffizienten der Regressionsgleichungen des Verschlämmungsmoduls bei der Simulation von Beregnungsversuchen in WaSiM mit Modellerweiterung
Abb.	
Abb.	7-11: Bodenbedeckungsgrade, Niederschlag und Abfluss auf den Ackerschlägen A17 und A18 in täglichen Zeitschritten
Abb.	7-12: Kumulierte Werte der modellierten Abflüsse und des gemessenen Abflussvolumens sowie zeitlicher Verlauf der Verschlämmungsspeichers für das Ereignis im Juni 1995 auf den Einzugsgebieten EO2 und EO3
Abb.	7-13: Kumulierte Werte der modellierten Abflüsse und des gemessenen Abflüssvolumens sowie zeitlicher Verlauf der Verschlämmungsspeichers für das Ereignis im Juli 1996 auf dem Einzugsgebiet E03
Abb.	7-14: Kumulierte Werte der modellierten Abflüsse und des gemessenen Abflussvolumens sowie zeitlicher Verlauf der Verschlämmungsspeichers für das Ereignis im Mai 1999 auf dem Einzugsgebiet E03
Abb.	7-15: Anteil der Abflusskomponenten am Gesamtabfluss bei Einzelereignissen auf den Einzugsgebieten E02 und E03
Abb.	$7\text{-}16\text{: Oberfl\"{a}chenabfluss beim Ereignis am }05.07.1996 \ auf \ den \ Einzugsgebieten \ E05 \ und \ E06164$
Abb.	7-17: Verteilung der Bodentypen im 50m-Raster bis zum Pegel Menzingen
Abb.	7-18: Landnutzung im Einzugsgebiet Pegel Menzingen im 50m Raster für das Jahr 1994 168
Abb.	7-19: Landnutzung im Einzugsgebiet Pegel Menzingen im 50m Raster für das Jahr 1995
Abb.	7-20: Abflussganglinien am Pegel Menzingen für die Ereignisse 1 - 4 nach der Kalibrierung ohne Modellerweiterungen
Abb.	7-21: Abflussganglinien am Pegel Menzingen für die Ereignisse 1 - 4 mit optimierten Parametern und aktiviertem <i>Surface Routing</i> Modul
Abb.	7-22: Abflussganglinien am Pegel Menzingen für die Ereignisse 1 - 4 mit optimierten Parametern und aktiviertem <i>Surface Routing + Silting Up</i> Modul
Abb.	7-23: k_s der verschiedenen Ap-Horizonte im Verhältnis zum Gütemaß RMSE bei der SCE-Kalibrierung von Ereignis 1

Abb. 7-24: Abflussganglinien am Pegel Menzingen für die Ereignisse 1 - 4 nach der Kalibrierung mit	
Modellerweiterungen	176
Abb. 7-25: Verschlämmung und Oberflächenabfluss für das Ereignis 01 am 27.06.1994	177
Abb. 7-26: Entwicklung der Gütewerte mit den Modellierungsansätzen der Einzelereignisse	178
Abb. 7-27: Abhängigkeit des RMSE von den kalibrierten Parameter im SCE-Algorithmus	180
Abb. 7-28: Kontinuierliche Simulation des hydrologischen Sommerhalbjahres der Jahre 1994 und 1995 am	
Pegel Menzingen	182
Abb. 7-29: Kontinuierliche Simulation des hydrologischen Sommerhalbjahres der Jahre 1994 und 1995 am	
Pegel Menzingen ohne die Modellerweiterungen	184
Abb. 7-30: Kontinuierliche Simulation des hydrologischen Sommerhalbjahres der Jahre 1994 und 1995 am	
Pegel Menzingen bei konservierender Bodenbearbeitung	186
Abb. 7-31: Vergleich der simulierten Abflüsse bei Parametrisierung der konventionellen und konservierende	en
Bodenbearbeitung für das Ereignis am 1921.09.1995 am Pegel Menzingen	188

Tabellenverzeichnis

Tab.	4-1: Beregnungs- und Ploteigenschaften der Beregnungsexperimente nach Kampagnen	47
Tab.	4-2: Variablenbezeichnungen in der Beregnungsdatenbank	51
Tab.	4-3: Identifikation landwirtschaftlicher Maßnahmen und die dadurch beeinflussten hydrologischen	
	Prozesse aus der Literaturrecherche	53
Tab.	4-4: Sonderfälle bei der Bestimmung der Fließrichtung	57
Tab.	4-5: Empirische Koeffizienten a,b,c zur Bestimmung des Rauigkeitskoeffizienten $k_{\rm st}$ für konservierende	
	Bodenbearbeitung	
	4-6: Erweiterung in WaSiM ab Version 8.1.1	
	4-7: Parametrisierung des Verschlämmungsmoduls in der Landnutzungstabelle in WaSiM	
	4-8: Parametrisierung des Verschlämmungsmoduls in der Bodentabelle in WaSiM	76
Tab.	4-9: Parametrisierung des Surface-Routing-Moduls im Abschnitt [surface_routing] in der WaSiM-	
	Steuerdatei	
	4-10: Parametrisierung des Surface-Routing-Moduls in der Landnutzungstabelle in WaSiM	
Tab.	4-11: Gütefunktionen und ihre mathematische Formulierung für die Parameteroptimierung der Kopplu	-
	SCE mit WaSiM	
	5-1: Abflussereignisse auf den Einzugsgebieten des Kehrfeldes von 1993 - 2001	
	5-2: Bodenart nach Korngrößenverteilung (Klassifizierung nach KA5)	
	5-3: Gesättigte hydraulische Leitfähigkeit aus den Experimenten	94
Tab.	5-4: Gesättigte hydraulische Leitfähigkeit nach Experimenten und der Analyse der Bodenproben und	
	Anwendung der PTF nach Scheinost 1995, Carsel & Parrish 1988 und Rawls & Brakensiek 1989	
	5-5: Flächennutzung des Weiherbachgebiets	
	5-6: Kenndaten der größten N-A-Ereignisse am Pegel Menzingen	
	5-7: Mualem-van-Genuchten-Parameter für die Bodenhorizonte im Weiherbachgebiet	
	6-1: Einstufung der Verschlämmungsneigung nach KA5	
	6-2: Codierung der Teildatensätze der Beregnungsdatenbank	
	6-3: Lageparameter der optimierten Parameter des modifizierten Horton-Modells	
	6-4: Bestimmtheitsmaße R² der Hauptkomponentenregression	11/
Tab.	6-5: p-Werte der erklärenden Variablen der multiplen Regressionsansätze für die Schätzung der	
	Infiltrationsparameter in der modifizierten Horton-Gleichung;	
	6-6: Im Teildatensatz SY erhobene Bodenkenngrößen für jede Beregnungsparzelle	126
ıab.	6-7: Ergebnisse der Anpassung der Approximationsmodelle nach SCHRÖDER (2000) an die optimierten Parameter der Beregnungsdatenbank	127
Tah	6-8: Zusammenfassung der Gütemaße der Infiltrationsraten [mm/h] über die Regressionsansätze auf di	
I dD.	einzelnen SEQ von <i>HorKal</i>	
Tah	6-9: Anpassung des Gesamtmodells mit der Methode der kleinsten Quadrate	
	6-10: Gütemaße für die Anwendung des Gesamtmodells auf die Beregnungsdatenbank	
	7-1: Parametrisierung der Bodenschichten (Mittelwerte und Standardabweichung) nach SCHÄFER (1999)	
Tab.	die Simulation der Beregnungsversuche mit Kalibrierung der VAN-GENUCHTEN-Parameter und die Anzahl	
	Simulationen, bei denen die Kalibrierung ohne Modelleerweiterung an die Parametergrenzen stößt	
Tab.	7-2: Mittelwerte der Gütemaße bei der Simulation von Beregnungsversuchen des Teildatensatzes WB i	
	WaSiM	
Tab.	7-3: Charakterisierung der einzelnen für die Modellierung herangezogenen Einzugsgebiete	157
	7-4: Ausgewählte Niederschlag-Abfluss-Ereignisse und zugehörige Bewirtschaftung auf den	
	Einzugsgebieten EO2 und EO3	159
Tab.	7-5: Ausgewählte Niederschlag-Abfluss-Ereignisse und zugehörige Bewirtschaftung auf den	
	Einzugsgebieten E05 und E06	163
Tab.	7-6: Kenngrößen der einzelnen Felder bei den simulierten Ereignissen	165

Tab. 7-7: N-A-Ereignisse am Pegel Menzingen zur Simulation der konventionellen Bewirtschaftung	. 167
Tab. 7-8: Anhaltswerte für den Rauigkeitsbeiwert nach MANNING-STRICKLER	. 168
Tab. 7-9: Parameter für die SCE-Kalibrierung der Einzelereignisse	. 170
Tab. 7-10: RMSE und optimierte Parameter für die SCE-Kalibrierung der einzelnen Ereignisse ohne	
Modellerweiterungen	. 171
Tab. 7-11: Werte der Gütefunktionen für die Ereignisse 1 - 4 bei der Kalibrierung ohne Modellerweiterunge	n
	. 172
Tab. 7-12: Werte der Gütefunktionen für die Ereignisse 1 - 4 mit optimierten Parametern und aktiviertem	
Surface Routing Modul	. 173
Tab. 7-13: Werte der Gütefunktionen für die Ereignisse 1 - 4 mit optimierten Parametern und aktiviertem	
Surface Routing + Silting Up Modul	. 174
Tab. 7-14: Werte der Gütefunktionen für die Ereignisse 1 - 4 bei der Kalibrierung mit Modellerweiterungen.	. 176
Tab. 7-15: Vergleich der beobachteten und simulierten Abflusskenngrößen sowie Anteil der simulierten	
Abflusskomponenten am Gesamtabfluss für die Ereignisse 1 – 4	. 179
Tab. 7-16: RMSE und optimierte Parameter für die SCE-Kalibrierung der einzelnen Ereignisse	. 179
Tab. 7-17: Kenngrößen der Abflussereignisse im hydrologischen Sommerjahr 1994 am Pegel Menzingen ohr	ne
(oE) und mit (mE) Modellerweiterungen	. 181
Tab. 7-18: Kenngrößen der Abflussereignisse im hydrologischen Sommerjahr 1995 am Pegel Menzingen ohr	ne
(oE) und mit (mE) Modellerweiterungen	. 181
Tab. 7-19: Langfristige Aufteilung der Abflusskomponenten der Monate April - Oktober für die Jahre 1994 u	ınd
1995 in [mm]	. 183
Tab. 7-20: Kenngrößen der Abflussereignisse im hydrologischen Sommerjahr 1994 am Pegel Menzingen bei	
konservierender Bodenbearbeitung (kons) m Vergleich zur konventionellen Bodenbearbeitung (konv)	
Tab. 7-21: Kenngrößen der Abflussereignisse im hydrologischen Sommerjahr 1995 am Pegel Menzingen bei	
konservierender Bodenbearbeitung (kons) m Vergleich zur konventionellen Bodenbearbeitung (konv)	
Tab. 7-22: Langfristige Aufteilung der Abflusskomponenten der Monate April - Oktober für die Jahre 1994 u	
1995 in [mm] bei konservierender Bodenbearbeitung	