Modellbasierter Entwurf und Bewertung von multifunktionalen Brennstoffzellensystemen auf Flugzeugebene

Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor Ingenieur genehmigte Dissertation

von

Dipl.-Ing. Hauke Peer Lüdders

aus Cloppenburg

2014

1. Gutachter:	Prof. DrIng. Frank Thielecke	
	Institut für Flugzeug-Systemtechnik	
	Technische Universität Hamburg-Harburg	
2. Gutachter:	Prof. DrIng. Günter Ackermann Institut für Elektrische Energiesysteme und Automation Technische Universität Hamburg-Harburg	

Tag der mündlichen Prüfung: 14. März 2014

Schriftenreihe Flugzeug-Systemtechnik

Band 1/2014

Hauke Peer Lüdders

Modellbasierter Entwurf und Bewertung von multifunktionalen Brennstoffzellensystemen auf Flugzeugebene

Shaker Verlag Aachen 2014

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 2014

Copyright Shaker Verlag 2014 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-2857-7 ISSN 1861-5279

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de "Essentially, all models are wrong, but some are useful." GEORGE E. P. BOX

Für Annika

Danksagung

Die vorliegende Arbeit entstand im Wesentlichen während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Flugzeug-Systemtechnik der Technischen Universität Hamburg-Harburg. Die notwendigen Grundlagen dieser Promotion sind im Rahmen des Hamburger Leuchtturmprojektes "Kabinentechnologie und Multifunktionale Brennstoffzelle" geschaffen worden.

An erster Stelle möchte ich ganz herzlich meinem Doktorvater Herrn Professor Dr.-Ing. Frank Thielecke danken, der mir immer Vertrauen und volle Unterstützung sowie die nötige wissenschaftliche Anleitung gegeben hat, ohne die diese Arbeit nicht entstanden wäre. Herrn Prof. Dr.-Ing. Günter Ackermann danke ich für seine freundliche Bereitschaft, das Zweitgutachten zu verfassen.

Ich möchte meinem Projektpartner Airbus Operations GmbH für dieses sehr spannende Forschungsthema und das Vertrauen in meine Fähigkeiten danken. Besonders möchte ich an dieser Stelle Barnaby Law, Torsten Stengel und Jörg Tappermann nennen, die mir auch nach meinem Wechsel zu Airbus dort die notwendigen Freiräume geschaffen haben, um diese Arbeit weiter zu entwickeln. Im Rahmen des o.g. Forschungsprojektes fand eine Vielzahl von wissenschaftlichen Studien statt. Durch das besonders freundschaftliche und kollegiale Miteinander der Doktoranden der beteiligten Universitäten sind sehr interessante themenübergreifende Erkenntnisse und Veröffentlichungen entstanden, die anders nicht möglich gewesen wären und für die ich mich bedanken möchte.

Herzlich danke ich auch allen Mitarbeitern und ehemaligen Kollegen, die mich während meiner Zeit am Institut begleitet haben. Neben dem fachlichen Austausch stand auch immer das Persönliche im Fokus. Während dieser Zeit haben sich tiefe Freundschaften entwickelt, wofür ich mich ganz besonders und hier stellvertretend bei Jan Haar, Matthias Krings und Hendrik Strummel bedanken möchte. Zudem möchte ich meinen ehemaligen Studenten, insbesondere Florian Kirchner, Riko Bornholdt, Jan Grymlas und Hendrik Strummel danken, die durch ihre Diplomarbeiten wichtige Beiträge zu dieser Arbeit leisteten.

Ich danke auch Sebastian Altmann, der mir beim Verfassen dieser Arbeit als Diskussionspartner immer wichtiges Feedback und Mut gegeben hat.

Besonders möchte ich mich aber bei meiner Familie, insbesondere bei meiner Frau Annika sowie meinen guten Freunden bedanken, die mir Rückhalt, Liebe und die nötige Kraft gegeben haben, dieses Vorhaben abzuschließen. – Danke!

Hamburg, im April 2014

Hauke Lüdders

Inhaltsverzeichnis

Al	Abbildungsverzeichnis			
Ta	belle	nverzeichnis	xv	
N	omen	klatur	xvii	
	For	nelzeichen	xvii	
	Indi	zes	xx	
	Abk	ürzungen	xxiv	
1	Einl	eitung	1	
	1.1	Zielsetzung	3	
	1.2	Struktur	4	
2	Ent	wicklungen und Trends in der Brennstoffzellentechnologie	7	
	2.1	Klassifizierung von Brennstoffzellen	7	
	2.2	$Funktionsweise\ einer\ Polymerelektrolytmembran-Brennstoffzelle$	10	
	2.3	Konzepte zur Wasserstoffspeicherung	13	
		2.3.1 Metallhydrid-Speicher	13	
		2.3.2 Gas-Speicher	14	
		2.3.3 Kryogene Speicher	14	
	2.4	System technisches Potential für die PEMFC-Technologie	16	
	2.5	Luftfahrttechnische Anwendungen	19	
3	Ent	wurfsprozess für Brennstoffzellensysteme	25	
	3.1	Allgemeiner Flugzeug-Entwurfsprozess	26	
	3.2	Einfluss der Flugzeugsysteme auf den Flugzeugvorentwurf $\ .$.	29	
	3.3	Anforderungen an einen Entwurfsprozess für Brennstoffzellen-		
		systeme	31	
	3.4	Entwickelter Entwurfsprozess	32	

4	Stra	ntegien	zur Systemintegration	35
	4.1	Funkt	ionale Systemintegration	35
		4.1.1	Autonome Energieversorgung am Boden	36
		4.1.2	Notenergie-Versorgung	37
		4.1.3	Unterstützung des elektrischen Netzwerkes im Fehlerfall	39
		4.1.4	Bereitstellung von Inertgas zur Treibstofftank-Inertisierung	40
		4.1.5	Bereitstellung von Inertgas zur Frachtraum-Brandbe-	
			kämpfung	44
		4.1.6	Generierung von Frischwasser	47
	4.2	Flugz	eugseitige Integration	49
		4.2.1	Bereitstellung von Kühlleistung	49
		4.2.2	Luftversorgung des Brennstoffzellensystems	51
		4.2.3	Leistungseinspeisung in das Bordnetz	52
	4.3	Zusan	nmenfassung	56
5	Syst	tement	wurfs-Methodik	59
	5.1	Aufba	u der Systementwurfs-Methodik	59
5.2 Komponenten-Auslegung und Optimierung		Komp	oonenten-Auslegung und Optimierung	63
		5.2.1	Herausforderungen bei der Auslegung von Brennstoffzel-	
			lensystemen	64
		5.2.2	Bekannte Verfahren zur Auslegung und Optimierung von	
			Systemen im Flugzeugvorentwurf	66
		5.2.3	Bedarf und Ziele für die Entwicklung einer neuartigen	
			modellbasierten Optimierungsmethode	68
	5.3	Mode	llbasierte Auslegungs- und Optimierungsmethode	70
		5.3.1	Auslegungs- und Optimierungsverfahren	71
		5.3.2	Vorteile des entwickelten Auslegungs- und Optimierungs-	
			verfahrens	73
		5.3.3	Vergleich zwischen einer Verhaltensparameter-basierten	
			und einer Geometrieparameter-basierten Optimierung .	75
		5.3.4	Erweiterung zur Berücksichtigung mehrerer Auslegungs-	
			punkte	81
		5.3.5	Implementierung der Software SOFIS	85

	5.4	Optin	imierungsalgorithmus $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $		
5.4.1 Beschreibung des Optimierungsproblems		Beschreibung des Optimierungsproblems	87		
		5.4.2	Klassifizierung des Optimierungsproblems	88	
		5.4.3	Der NSGA-II Algorithmus	90	
5.4.4 Erweiterung und Modifikation		Erweiterung und Modifikation	91		
		5.4.5	Analyse der Leistungsfähigkeit	94	
	5.5	Model	dellbibliotheken		
5.5.1 Anforderungen und Modellierungsansätze		Anforderungen und Modellierungsansätze	96		
		5.5.2	Beispielkomponente: Rohrleitung	100	
		5.5.3	Beispielkomponente: Ventilator	104	
		5.5.4	Beispielkomponente: Brennstoffzellenstack	108	
		5.5.5	Beispielkomponente: Wärmeübertrager	113	
	5.6	Zusan	nmenfassung	119	
6	Bew	ertung	auf Flugzeugebene	121	
	6.1	Konze	epte zur Bewertung von Systemen auf Flugzeugebene	121	
		6.1.1	Heutige Verfahren	121	
6.1.2 Motivation zur Entwicklung eines erweiterten Ver		Motivation zur Entwicklung eines erweiterten Verfahrens			
$(SysFuel^+)$		126			
	6.2	3.2 Entwicklung der benötigten Teilmodule für SYSFUEL ⁺		128	
		6.2.1	Triebwerk-Modul	128	
		6.2.2	Flugmechanik-Modul	137	
		6.2.3	Flugzeug-Resize-Modul	145	
	6.3	Aufba	u von $SYSFUEL^+$	156	
		6.3.1	Programmblöcke	157	
		6.3.2	Validierung	162	
	6.4	Illustr	ratives Bewertungsbeispiel	163	
		6.4.1	Vorstellung des Integrationskonzeptes	164	
		6.4.2	Bewertung des Integrationskonzeptes	166	
		6.4.3	Erweiterung um ein elektrisches Taxi-System	167	
	6.5 Zusammenfassung		169		

7	Beis	pielentwicklung eines multifunktionalen Brennstoffzellensystems	171
	7.1	Teil 1: Funktionale Integrationsstrategie auf Flugzeug-	
		Systemebene	172
	7.2	Teil 2: Entwurf des Brennstoffzellensystems	173
		7.2.1 Identifikation der Unterfunktionen und der Auslegungs-	
		punkte auf Systemebene (Phase 1)	173
		7.2.2 Systemarchitektur-Entwurf (Phase 2)	176
		7.2.3 Komponenten-Auslegung und Optimierung (Phase 3) .	179
		7.2.4 Validierung und Analyse (Phase 4)	184
	7.3	Teil 3: Bewertung auf Flugzeugebene	189
8	Zusa	ammenfassung und Ausblick	193
Α	Aus	zug aus der Norm MIL-STD-704F	197
в	Weiterführende Ergebnisse zu den Anwendungsbeispielen (Kapitel 6)199		
с	Beispiel: Anforderungen für das multifunktionale Brennstoffzellensys-		
	tem		203
Lit	erati	ırverzeichnis	207

Abbildungsverzeichnis

1.1	(a) DLR Forschungsflugzeug ATRA auf der Internationalen Luft- fahrtausstellung (ILA) in Berlin 2008; (b) Brennstoffzellensystem,	
	installiert im Cargo-Bereich des ATRA	3
2.1	Schematischer Aufbau einer PEMFC, nach [32]	10
2.2	Qualitativer Verlauf einer Spannungs-Stromdichten-Kennlinie einer	
	PEMFC, nach [132]	12
2.3	Kryogener Wasserstoffspeicher, nach [124] und [184]	15
2.4	Typisches $80\mathrm{kW}$ Brennstoffzellensystem aus dem Jahr 2008, verein-	
	facht nach $[85]$	17
2.5	Prognostiziertes 80 kW Brennstoffzellensystem für das Jahr 2015,	
	vereinfacht nach [85] \ldots \ldots \ldots \ldots \ldots \ldots \ldots	18
2.6	Typische Systemarchitektur für ein multifunktionales Brennstoffzel-	
	lensystem im Kabinenbereich, nach [139]	21
2.7	Multifunktionaler Integrationsansatz für Brennstoffzellensysteme,	
	nach AIRBUS [47], [103]	22
3.1	Phasen des Flugzeug-Entwurfsprozesses, nach [13]	26
3.2	Schematischer Ablauf des Vorentwurfs, nach [13]	28
3.3	Einfluss von Systemen auf den Flugzeugentwurf	30
3.4	Entwurfsprozess für multifunktionale Brennstoffzellensysteme $\ . \ .$	33
4.1	Schematische Darstellung eines Inertgas-Trocknungssystems	41
4.2	Schematische Darstellung eines brennstoffzellenbasierten	
	Frachtraum-Brandbekämpfungssystems	45
4.3	Schematische Darstellung eines brennstoffzellenbasierten Wasserge-	
	nerierungssystems	47
4.4	Grundschaltung eines Tief- und eines Hochsetzstellers	53

4.5	Fehlertoleranter Hoch-Tiefsetzsteller bei serieller Verschaltung von zwei Brennstoffzellenstacks, nach [87]	54	
4.6	Tiefsetzsteller mit By-Pass-Schaltung, nach [108]		
4.7	Ausnutzung des Spannungstoleranzbandes zur Reduktion des Be-		
	triebsbereiches des Tiefsetzstellers, nach [109]	55	
5.1	Struktur der Systementwurfs-Methodik	60	
5.2	Systemarchitektur für ein Brennstoffzellensystem mit der Funktion		
	"Notenergie-Versorgung"	63	
5.3	Vereinfachtes Brennstoffzellensystem	64	
5.4	Auslegungs- und Optimierungsverfahren (bei einem Auslegungspunkt)	71	
5.5	Geometrie- und Massenbestimmung auf Basis der simulierten Zu-		
	standsgrößen	74	
5.6	Ergebnis der geometrischen Optimierung nach jeder Generation	77	
5.7	$Ergebnis \ der \ Verhalten sparameter-Optimierung \ nach \ jeder \ Generation$	78	
5.8	Zielfunktion der Geometrieparameter-Optimierung $(w_{HX}, h_{tube},$		
	$h_{fin}, n_{loop} = \text{konst.}$	79	
5.9	Zielfunktion der Verhaltensparameter-Optimierung ($\Delta p_{liq} = \text{konst.}$)	79	
5.10) Vergleich wiederholt durchgeführter Optimierungsstudien 8		
5.11	Multifunktionales Brennstoffzellensystem mit zwei Auslegungs-		
	punkten	82	
5.12	Erweitertes Auslegungs- und Optimierungsverfahren	83	
5.13	Lösungs- und Zielraum einer Zielvektorfunktion $\mathbf{Q}(\mathbf{x})$ mit $n=3$		
	und $m = 2$, nach [186] \ldots \ldots \ldots \ldots \ldots \ldots	87	
5.14	Klassifizierung von Optimierungsproblemen, nach [186]	88	
5.15	Ablaufschema des NSGA-II, nach [28]	91	
5.16	Ablaufschema der implementierten Optimierungssequenz	93	
5.17	Approximation einer Pareto-Front mit und ohne crowding-distance-		
	Modifikation	94	
5.18	Vergleich der Pareto-Front Approximation von drei unabhängigen		
	Durchläufen	95	
5.19	Schematische Darstellung des Rohrleitungsmodells	101	
5.20	Struktogramm des Rohrleitungs-Auslegungsskriptes	104	
5.21	Schematische Darstellung eines Radiallüfters	105	

5.22	Struktogramm des Radialventilator-Auslegungsskriptes	108	
5.23	Schematische Darstellung des Brennstoffzellenstacks 109		
5.24	Schematische Darstellung und Topologie des Wärmeübertragers mit		
	$n_{backflow} = 1, n_{loop} = 2, n_{tube} = 6$ und $n_{passage} = 5 \dots \dots \dots$	114	
5.25	Struktogramm des Wärmeübertrager-Auslegungsskriptes	118	
5.26	Struktogramm der Unterfunktion $\mathrm{HX}_{\mathrm{geo}}$	119	
6.1	Prinzipieller Aufbau von SysFuel, nach [33]	126	
6.2	$\label{eq:prinzipieller} \mbox{Prinzipieller Aufbau von SysFuel}^+ \ \ \ldots \$	128	
6.3	Triebwerkstationen eines Geared-Turbofan-Triebwerkes, aus $\left[98\right]$	129	
6.4	Erhöhung des spezifischen Treibstoffverbrauches infolge von Sekun-		
	därleistungsentnahmen, aus [33]	134	
6.5	Einbindung der Triebwerk-Listen im Triebwerk-Modul	136	
6.6	Qualitativer Verlauf einer Referenz-Flugmission in den einzelnen		
	Flugphasen	139	
6.7	Vereinfachtes Kräftegleichgewicht am Flugzeug, nach [189]	141	
6.8	Qualitative Darstellung der Approximation der Aerodynamik	143	
6.9	Aufbau des Flugmechanik-Moduls	145	
6.10	Triebwerkgewicht in Abhängigkeit des Reiseschubs	147	
6.11	Spezifischer Treibstoffverbrauch in Abhängigkeit des Reiseschubs . 14		
6.12	2 Darstellung des Triebwerk-Resize durch Interpolation der		
	Triebwerk-Listen	149	
6.13	Schematische Darstellung der Flügelgeometrie	150	
6.14	Ablaufdiagramm des Flugzeug-Resize-Moduls	155	
6.15	Oberste Programm-Ebene von SysFuel ⁺	156	
6.16	FuelCalc-Block	158	
6.17	PreProcess-Block	160	
6.18	Ablaufdiagramm von SysFuel ⁺	161	
6.19	Absoluter Fehler von SysFuel $^+$ im Vergleich zu TeVA $\ldots\ldots\ldots$	163	
6.20	Relativer Fehler von SysFuel $^+$ im Vergleich zu TeVA \ldots .	164	
6.21	Evaluierungsergebnis des Anwendungsbeispiels	167	
6.22	Evaluierungsergebnis des Anwendungsbeispiels mit einem elektri-		
	schen Taxi-System	168	

7.1	Systemarchitektur des Beispielsystems	178
7.2	Pareto-Front des Beispielsystems	183
7.3	Validierung der Anforderung #7: Bereit gestellte elektrische Leis-	
	tung und Wasserstoffverbrauch des Systems	185
7.4	Validierung der Anforderung #7: Abzuführende Wärmelast an die	
	Umgebung und produzierte Stackleistung	186
7.5	Bereit gestellte elektrische Leistung während einer 500 nm-Mission	
	bei ISA+0K Umgebungsbedingungen	187
7.6	Wasserstoffbedarf und Füllstand des Wasserstoffspeichers (voll ge-	
	füllt zu Beginn) während einer 500 nm-Mission bei ISA+0 K Umge-	
	bungsbedingungen	188
7.7	An die Umgebung abzuführende Wärmelast und induzierter Luftwi-	
	derstand während einer 500 nm-Mission bei $\mathrm{ISA}{+}0\mathrm{K}$ Umgebungs-	
	bedingungen	188
7.8	Evaluierungsergebnis des gewählten Integrationskonzeptes $\ . \ . \ .$	190
A 1	Erlaubtes Spannungstoleranzband eines HVDC-Netzwerkes nach	
11.1	MIL-STD-704F aus [29]	197
		101
B.1	Differenz des Treibstoffverbrauchs vor und nach der Systemintegra-	
	tion. 2930 nm Mission; kein Taxi-System	199
B.2	Differenz des Treibstoffverbrauchs vor und nach der Systemintegra-	
	tion. 500 nm Mission; kein Taxi-System	200
B.3	Differenz des Treibstoffverbrauchs vor und nach der Systemintegra-	
	tion. 2930 nm Mission; mit Taxi-System $\ldots \ldots \ldots \ldots \ldots \ldots$	200
B.4	Differenz des Treibstoffverbrauchs vor und nach der Systemintegra-	
	tion. 500 nm Mission; mit Taxi-System	201

Tabellenverzeichnis

2.1	Zusammenfassung der fünf Haupttypen von Brennstoffzellen, nach			
	[4] und [107]	8		
5.1	Variablenklassifikation nach der BOND-GRAPH-Theorie, nach $\left[15\right]$.	69		
5.2	Größen der Geometrieparameter-Optimierung	76		
5.3	Größen der Verhaltensparameter-Optimierung	76		
5.4	Anforderungen an die Modellbibliotheken, aus [64]	97		
5.5	<i>GP</i> -Modellparameter einer Rohrleitung	101		
5.6	VP-Modellparameter einer Rohrleitung	103		
5.7	GP-Modellparameter des Radialventilators	106		
5.8	<i>VP</i> -Modellparameter des Radialventilators	107		
5.9	GP-Modell parameter des Brennstoffzellenstacks	109		
5.10	<i>VP</i> -Modellparameter des Brennstoffzellenstacks	112		
5.11	<i>GP</i> -Modellparameter des Wärmeübertragers	114		
5.12	<i>VP</i> -Modellparameter des Wärmeübertragers	117		
6.1	Design parameter des betrachteten Geared-Turbofan-Triebwerkes .	131		
6.2	Nebenbedingungen bei der Modellherleitung			
6.3	Optimierungsvariablen bei der Modellherleitung			
6.4	Parameter zur Beschreibung der Startphase unter extremen Um-			
	weltbedingungen	133		
6.5	Einzuhaltende Nebenbedingungen während der Startphase unter ex-			
	tremen Umweltbedingungen	134		
6.6	Benötigte Triebwerk-Listen zur Berücksichtigung der Sekundärleis-			
	$tungsentnahmen . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	135		
6.7	Benötigte Geometrieparameter für den Flügel-Resize	150		
6.8	Benötigte Geometrieparameter für den Leitwerk-Resize	153		
6.9	Gewichtsbilanz des Anwendungsbeispiels			

6.10	Auswirkungen des Brennstoffzellensystems und des Inertgassystems	
7.1	Gewicht der obsoleten Referenzsysteme	172
7.2	Einsparungen durch das Ersetzen des Inertgassystems	173
7.3	Unterfunktionen für die Funktion "Autonome Energieversorgung am	
	Boden"	174
7.4	Unterfunktionen für die Funktion "Unterstützung des elektrischen	
	Netzwerkes im Fehlerfall"	175
7.5	Unterfunktionen für die Funktion "Bereitstellung von Inertgas zur	
	Treibstofftank-Inertisierung"	175
7.6	Unterfunktionen für die Funktion "Bereitstellung von Inertgas zur	
	Frachtraum-Brandbekämpfung"	176
7.7	Verhaltensparameter des Systemsimulationsmodells	180
7.8	Operationsparameter des Auslegungspunktes 1	181
7.9	Operationsparameter der Auslegungspunkte 2 und 3	181
7.10	Finale Parameter der Systemauslegung	184
7.11	Gewichtsbilanz für das gewählte Integrationskonzept	189
7.12	Weitere Auswirkungen des gewählten Integrationskonzeptes $\ . \ . \ .$	190
C.1	Anforderungsliste für das multifunktionale Brennstoffzellensystem	203

Nomenklatur

Formelzeichen

Zeichen	Einheit	Bedeutung
A	$[m^2]$	Fläche
b_S	[kg/s/N]	spezifischer Treibstoffverbrauch
b_W	[m]	Flügel-Spannweite
c	[J/kg/K]	spezifische Wärmekapazität
C	[J/s/K]	Wärmekapazitätsstrom
C^*	[-]	Wärmekapazitätsstromverhältnis
C_D	[-]	Widerstandsbeiwert
C_L	[-]	Auftriebsbeiwert
F		Pareto-Front
F	[N]	Schub
g	$[m/s^2]$	Erdbeschleunigung
geo		Geometriegrößen (zusammengefasst)
h	[m]	Höhe
\dot{H}	[W]	Enthalpiestrom
h_{rel}	[-]	Zapfluft-Entnahmeposition
H_l	[J/kg]	Unterer Heizwert
Ι	[A]	Stromstärke
i	$[A/cm^2]$	Stromdichte
i_G	[-]	Getriebeübersetzung
k	[-]	Wichtungsfaktor
l	[m]	Länge
L	[kW]	Höhe der Sekundärleistungsentnahme
L	[N]	Auftrieb

Lateinische Formelzeichen

Zeichen	Einheit	Bedeutung
Listen		Triebwerk-Listen
m	[kg]	Masse
\dot{m}	[kg/s]	Massenstrom
M	[kg/mol]	Molmasse
Ma	[-]	Mach-Zahl
Map		Kennfeld
n	[-]	Anzahl
N	[-]	Populationsgröße
\overline{N}	[-]	Böenlastfaktor
NTU	[-]	Number of Transfer Units
Nu	[-]	NUSSELT-Zahl
p	[Pa]	Druck
P	[W]	Leistung
P_t		Elterngeneration
polcve		Polkurve
Pr	[-]	Prandtl-Zahl
q	[Pa]	dynamischer Druck
Q	[-]	eine Dimension des Zielraums
\dot{Q}	[W]	Wärmestrom
Q_t		Nachkommen
R	[m]	Reichweite
R_{TM}	[-]	Quotient Startschub/ maximales Abfluggewicht
R_{TT}	[-]	Reiseschub-/Startschub-Verhältnis
Re	[-]	Reynolds-Zahl
S	$[m^2]$	Bezugsoberfläche
\dot{S}	[W/K]	Entropiestrom
states		Zustandsvariablen (zusammengefasst)
stepsize	[m]	Schrittweite
t	$[\mathbf{s}]$	Zeit
T	[K]	Temperatur
topology		Topologiegrößen (zusammengefasst)
$\frac{t_p}{c}$	[-]	relative Flügelprofiltiefe
U	[V]	Spannung
u	[V]	Zellpannung

Zeichen	Einheit	Bedeutung
v	[m/s]	Geschwindigkeit
V	[-]	Volumenkoeffizient
\dot{V}	$[m^3/s]$	Volumenstrom
V_D	[m/s]	maximale Sturzfluggeschwindigkeit
w	[m]	Tiefe
x	[-]	eine Dimension des Lösungsraums
X	[kg/kg]	Massenanteil
x_{EH}	[m]	Hebelarm des Höhenleitwerks
x_{EV}	[m]	Hebelarm des Seitenleitwerks

Griechische Formelzeichen

Zeichen	Einheit	Bedeutung
γ	[rad]	Bahnwinkel
ω	[rad/s]	Winkelgeschwindigkeit
Φ	[-]	Flussgröße
ϕ_{25}	[rad]	Flügelpfeilung
Ψ	[-]	Potentialgröße
ho	$[\mathrm{kg}/\mathrm{m}^3]$	Dichte
σ	[-]	Oswald-Faktor
au	[Nm]	Drehmoment
ε	[-]	Effizienz
ϵ	[-]	Konvergenzschranke
ζ	[-]	Reibkoeffizient

Mengen und Vektoren

Zeichen	Einheit	Bedeutung
F		Zielraum
L		Lösungsraum

Zeichen	Einheit	Bedeutung
Q		Zielvektorfunktion
х		Verhaltensparametersatz

Indizes

Index	Bedeutung
0	Initialwert
2	Einlaufzustand Triebwerk
13	Nebenstrom des Triebwerks
3	Zustand nach Hochdruckverdichter
4	Zustand Brennkammeraustritt
21	Hauptstrom des Triebwerks
22	Zustand vor Niederdruckverdichter
24	Zustand nach Niederdruckverdichter
25	Zustand vor Hochdruckverdichter
41	Turbineneintritt
500nm	500 nm-Mission
2930 nm	2930 nm-Mission
AC	Flugzeug
AIC	Zwischenkühler
air	Luft
Alu	Aluminium
APU	Hilfsgasturbine
aux	Nebenaggregate
В	Zapfluft
backflow	Rückfluss
bendth	Biegung
c	kalte Seite
CargoFire	Frachtraum-Brandbekämpfungssystem
cell	Zelle
CFK	kohlefaserverstärkter Kunststoff

Index	Bedeutung
comp	Komponente
cool	Kühlung
cor	korrigiert
dyn	dynamisch
D	Widerstand
DC	Auslegungspunkt
dry	trocken
E	Triebwerk
ECD	Triebwerkabkühlung
EH	Höhenleitwerk
el	elektrisch
ESU	Triebwerkaufwärmung
EV	Seitenleitwerk
fan	Ventilator
FC	Brennstoffzelle
FCS	Brennstoffzellenstack
fin	Luftfinne
fix	konstant
fluid	Fluid
fric	Reibung
FTIS	Treibstofftank-Inertisierungssystem
gas	gasförmig
gate	Gate-Phase
Gear	Getriebe
gen	generiert
Gen	Triebwerkgenerator
H_2	Wasserstoff
H_2O	Wasser
HPC	Hochdruckverdichter
HPS	Hochdruckwelle
HPT	Hochdruckturbine
ht	warme Seite

Index	Bedeutung	
HX	Wärmeübertrager	
Hyd	hydraulisch	
i	Zählvariable	
in	Eingang	
ISA	Standardatmosphäre	
K	Treibstoff	
k	Zählvariable 2	
lam	Laminar	
landing	Landung	
length	Länge	
LG	Fahrwerk	
liq	flüssig	
loop	Schleife	
loss	Verlust	
LPC	Niederdruckverdichter	
LPS	Niederdruckwelle	
LPT	Niederdruckturbine	
LW	Landegewicht	
max	maximal	
MHPS	maximale Leistungsentnahme Hochdruckwelle	
min	minimal	
MLPS	maximale Leistungsentnahme Niederdruckwelle	
mot	Motor	
MTOW	maximales Abfluggewicht	
MZFW	maximales Leertankgewicht	
N	Reiseschub	
NO_x	Stickoxid	
noz	Einlaufdüse	
O_2	Sauerstoff	
out	Ausgang	
ovl	übergeordnet	
passage	Gaspassage	

Index	Bedeutung
pipe	Rohrleitung
plates	Endplatten
PS	Triebwerkwelle
pump	Pumpe
r	Flügelrippen
real	realer Wert
ref	Referenzwert
req	benötigt
rot	rotatorisch
S	statisch
sim	Simulation
size	Baugröße
spec	spezifisch
start	Start der Take-off-Phase
stat	stationär
switch	Schaltpunkt
sys	System
T	total
t/o	Abflug
TAS	wahre Fluggeschwindigkeit
taxi	Taxi-Phase
th	theoretisch
TOW	Abfluggewicht
tube	Kühlrohr
var	variabel
W	Flügel
wheel	Laufrad

Abkürzungen

Abk.	Bedeutung
A/C	Flugzeug
ACARE	Advisory Council for Aeronautical Research in Europe
ACM	Air-Cycle-Machine
AFC	alkalische Brennstoffzelle
AP	Auslegungspunkt
APU	Auxiliary Power Unit
ASM	Air Separation Module
DC	Gleichstrom
dc	drag-count
DOE	US Department of Energy
EA	evolutionärer Optimierungsalgorithmus
EASA	Europäische Luftfahrtbehörde
EU	Europäische Union
FAA	US-amerikanische Luftfahrtbehörde
FCS	Brennstoffzellenstack
\mathbf{FH}	flight hour
FTIS	Treibstofftank-Inertisierungssystem
GD	geometrisch-dynamisch
GP	Geometrieparameter
HT	Hochtemperatur
HVDC	High Voltage DC
HX	Wärmeübertrager
ICAO	International Civil Aviation Organization
IFE	In-Flight-Entertainment
ISA	International Standard Atmosphere
MCFC	Schmelzkarbonat-Brennstoffzelle
MEA	More-Electric-Aircraft

Abk.	Bedeutung	
NACA	U.S. National Advisory Committee for Aeronautics	
NPSS	Numerical Propulsion System Simulation	
NSGA	Nondominated Sorting Genetic Algorithm	
OBIGS	On-Board Inertgas Generation System	
PAFC	Phosphorsäure-Brennstoffzelle	
PBI	Polybenzimidazol dotiert mit Phosphorsäure	
PEMFC	Polymerelektrolytmembran-Brennstoffzelle	
\mathbf{PGW}	Poly-Glycol-Wasser	
RAT	Ram Air Turbine	
SOFC	Festoxid-Brennstoffzelle	
SofiS	Sizing and optimization of implicit Systems	
TEFO	Total Engine Flame Out	
TEVA	Technology Value Analysis	
VP	Verhaltensparameter	
WHO	Weltgesundheitsorganisation	