Modellbildung einer Transversalflussmaschine für die stationäre und dynamische Simulation

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor–Ingenieurs (Dr.–Ing.) genehmigte Abhandlung

Vorgelegt von Manuel Gärtner aus Backnang

Hauptberichterin:

Mitberichter:

Prof. Dr.–Ing. Nejila Parspour Univ.–Prof. Dr.–Ing. habil. Dr. h.c. Kay Hameyer

Tag der mündlichen Prüfung: 28.04.2014

Institut für Elektrische Energiewandlung der Universität Stuttgart

2014

Berichte aus dem Institut für Elektrische Energiewandlung

Band 2

Manuel Gärtner

Modellbildung einer Transversalflussmaschine für die stationäre und dynamische Simulation

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2014

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2014

Copyright Shaker Verlag 2014 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3038-9 ISSN 2196-9213

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

Abkürzungsverzeichnis	VII		
Symbolverzeichnis			
Zusammenfassung XX			
Abstract			
1. Einleitung	1		
 Vorbetrachtungen 2.1. Modelle für elektrische Maschinen und ihre Anwendung 2.1.1. Simulation des dynamischen Verhaltens unter Verwendung des ESB	5 5 6 7 9 10 15 15 16 17 20		
2.2.4. Flussröhren – Möglichkeiten zur Modellierung von Luft- spalten in magnetischen Kreisen	. 29		

		2.2.5.	Maxwellsche Kraft in magnetischen, teilweise gesättigten	37
	23	Aufbau	und Funktion von Transversalflussmaschinen	34
	2.3.	7 3 1	Aufbau	34
		2.3.1.	Funktion einer permanentmagnetisch erregten Transver	54
		2.3.2.	salfusemaschine Analogie zur Synchronmaschine	35
		223	Funktion einer permanentmagnetisch erregten Transver	55
		2.3.3.	salflussmaschine – Analogie zum elektronisch kommu-	
			tierten Motor	37
		2.3.4	Funktion einer Reluktanz-Transversalflussmaschine	38
		2.3.5	Vorteile von Transversalflussmaschinen	38
	2.4	Klassifi	ikation bekannter Topologien von Transversalflussmaschinen	40
		2.4.1	Unterscheidungsmerkmale	41
		2.4.2	Besonderheiten bei linearen Transversalflussmaschinen	43
3.	Die	ineare	TFM mit PM in Sammleranordnung	45
	3.1.	Topolog	gie	45
	3.2.	Analyti	sche Modellierung	47
		3.2.1.	Geometrie der zu modellierenden Transversalflussmaschine	47
		3.2.2.	Modellierung des magnetischen Kreises als magnetisch	
			äquivalenter Kreis	48
		3.2.3.	Transformation des magnetisch äquivalenten Kreises in	
			ein Gyrator-Kapazitäts-Modell	67
	3.3.	Der Pro	ototyp	67
		3.3.1.	Zielsetzung bei der Konstruktion	67
		3.3.2.	Mechanischer Aufbau	68
л	Rea	eluna		73
7.	/ 1	Topolo	aie des RRG	75
	4.1. 1 2	Physika	alisches Modell	76
	т.2.	4 2 1	Elektrischer Teil der Regelstrecke	76
		422	Mechanischer Teil der Regelstrecke	80
	4.3.	Drehmo	omentregelung	81
	4.4	Drehmo	omentverteilung	82
	4.5.	Drehza	hlregelung	89
	4.6.	Drehza	hlbeobachtung	93
	4.7	Lageres	gelung	94
	4.8	Realisie	erung	96
	4.9.	Weitere	Regelungsverfahren	98
		4.9.1.	Inverse LUT	98

		4.9.2.	Parameteridentifikation	99
5.	Mes	sunger	und Ergebnisse	101
	5.1.	Kraftk	ennfeld	101
		5.1.1.	Gyrator-Kapazitäts-Modell	101
		5.1.2.	3-dimensionale Finite-Elemente-Methode	102
		5.1.3.	Messung	104
		5.1.4.	Schlussfolgerungen und Anwendung	105
	5.2.	Positio	niervorgang	109
		5.2.1.	Vorstellung der Ergebnisse	109
		5.2.2.	Beurteilung der GyCap-Ergebnisse	110
		5.2.3.	Beurteilung der Regelungsergebnisse	111
6.	Zusa	ammen	fassung und Ausblick	115
^	Max	wolleck	no Kraft	110
А.		Mather	notische Herleitung	120
	11.1.		Grundgleichungen	120
		A 1 2	Energieerhaltungsansatz	120
		A 1 3	Magnetische gespeicherte Energie	124
		A 1 4	Mechanisch abgegebene Energie	126
		A.1.5.	Magnetische Koenergie	129
		A.1.6.	Allgemeine Darstellung der Maxwellschen Kraft	131
	A.2.	Grafisc	che Veranschaulichung	132
	A.3.	Interpr	etation des Ergebnisses	137
Б	Eluc	oröbro	nnormoonzon dor LTEDM	120
Б.	R 1	Dositio	npermeanzen der Ein FW	1/1
	D.1. B 2	Restim	men nitt veranderung der Prussröhrenkönstenation	153
	D.2.	B 2 1	Für $0 < r < r$	153
		B 2 2	F iir r < r < r.	155
		B 2 3	$Fiir r_{a} \leq x \leq x_{b}$	156
		B 2 4	F if r < r < r.	157
		B 2 5	$Fiir r_4 < r < r_2$	160
		B 2.6	$Fiir r_{1} < r < r_{c}$	161
		B 2 7	$Fiir r_e < r < r_e$	162
		B.2.8	$Für x_{\alpha} < x < x_{b}$	162
		B.2.9.	$F\"{u}r x_h \le x < \infty \qquad \dots \qquad$	163

С.	Торо	ologien von Transversalflussmaschinen	165
	C.1.	Transversalfluss-Reluktanzmaschinen	165
	C.2.	TFPM mit Oberflächen-PM	166
	C.3.	TFPM mit PM in Sammleranordnung	168
		C.3.1. Dreidimensionale Flussführung im Stator	170
		C.3.2. Zweidimensionale Flussführung mit einseitigem Stator	170
		$C.3.3. \ \ Zweidimensionale \ Flussführung \ im \ doppelseitigen \ Stator \ .$	171
D.	Erga	inzungen zum implementierten Regelungssystem	173
	D.1.	Normierung	173
	D.2.	Parameter	176
Е.	Fert	igungskonzept für eine rotierende Transversalflussmaschine	181
	E.1.	Stand der Technik/bisherige Lösungsansätze für die Flussführung .	182
		E.1.1. Lösungen mit weichmagnetischen Pulververbundwerk-	
		stoffen	182
		E.1.2. Lösungen mit geblechten Komponenten	183
	E.2.	Lösungsvorschlag	190
		E.2.1. Randbedingungen	190
		E.2.2. Grundidee und prinzipielle Anordnung	190
		E.2.3. Möglichkeiten zur Realisierung verschiedener Topologien	192
	E.3.	Vor- und Nachteile des neuen Blechungskonzepts	193
F.	Ken	nzahlen für elektrische Maschinen	197
	F.1.	In der Literatur übliche Kennzahlen	198
		F.1.1. Leistungsdichte bezogen auf Volumen/Masse	198
		F.1.2. Drehmomentdichte bezogen auf Volumen/Masse	199
		F.1.3. Mittlerer Flächenschub	199
		F.1.4. Esson'sche Zahl	201
		F.1.5. Wirkungsgrad im Nennpunkt	201
	F.2.	Einführung weiterer aussagekräftiger Kennzahlen	202
		F.2.1. Wirkungsgrad im gesamten Betriebsbereich	202
		F.2.2. Drehmoment bezogen auf Läufer-Massenträgheitsmoment	203
	F.3.	Einordnung der Prototypen	205
Lit	eratu	rverzeichnis	211