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Abstract

Techniques to precisely determine the location of persons or objects based on

wireless local networks inside of buildings have recently gained a common in-

terest. The development of Ultra-wideband (UWB) technologies with a high tem-

poral resolution as well as new applications in the fields of healthcare, wireless

factory, ambient assisted living or generally location based services are the driv-

ing forces for wireless indoor localization. Nevertheless, the indoor radio channel

complicates the receive characteristics and the detection of the direct-path (DP)

and thus, precise positioning. The DP is the key factor for time-based positioning

as it directly represents the distance between an antenna pair. While all scenar-

ios feature multipath reception, especially dense multipath occurring in indoor

scenarios can lead to a shift of the DP pulse form. Especially in non-line-of-sight

(NLOS) antenna constellations, the DP is attenuated and can be hard to identify

due to superposition with noise and stronger echoes. These effects of the radio

propagation can lead to ambiguities in the distance estimation step. Hence, the

algorithms for indoor localization must be designed to overcome these specific

characteristics. The common algorithms in the literature are mostly based on a

two-step processing, i.e. the range estimation (ranging) for each link and the posi-

tion estimation using all distance estimates. According to this paradigm, a typical

ranging algorithm computes a single range estimate. From an information pro-

cessing point of view, this step is a hard-decision where information of the delay

profile is lost for subsequent processing steps.

Therefore, in this thesis, a different approach for wireless localization is inves-

tigated. Instead of selecting a single range estimate with 100 % belief, the soft-

ranging approach generates multiple range hypotheses in form of a direct-path

probability distribution, such that no information is neglected before the posi-

tion estimation takes place. The aim of this work is to investigate the proposed

soft-ranging approach and to demonstrate that it is superior in terms of indoor po-

sitioning accuracy to the classical two-step approach. To do so, the soft-ranging

algorithm is modified with a new parameterization concept using the character-

istics of the wireless channel. The generated DP probability mass functions will

be used as a soft-input for position estimation. For the latter, a grid-based maxi-

mum likelihood approach is considered which evaluates all distance hypotheses.

A specialization towards a specific system or standard is neglected. Instead, it is

assumed that the estimated delay profiles after channel response estimation have

been computed in an UWB-typical resolution. The delay profiles will be used to

evaluate the classical two-step algorithms as well as the proposed soft-ranging ap-

proach. Characteristic reference scenarios will be considered in LOS and NLOS.

The algorithms are evaluated in a static scenario in sense of an initial position-



ing without prior knowledge. The gained results of the soft-ranging approach are

promising and prove that the processing of measurements is superior compared

to the traditional two-step approach.
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