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Abstract

Position information has become an elementary part of the daily life, devices
like mobile phones or navigation systems using it extensively. Furthermore,
upcoming automotive technologies such as vehicle-to-vehicle communication
process this kind of data as well. However, the accuracy and availability of
position information obtained from affordable off-the-shelf GPS receivers
is limited due to physical constraints. At the same time, a more accurate
positioning would offer new possibilities for vehicle-related applications like
comfort and safety systems.

The work at hand describes novel measurement models for the localization
of vehicles in urban environments. The system utilizes different sensors
which are mounted to a vehicle: A gray scale camera, vehicle motion sensors
and a GPS receiver. Moreover, digital maps are used as additional source
of information. The innovation of the presented method is in the novel kind
of incorporation of the image data delivered by a camera sensor into the
process of estimating the vehicle’s position. In contrast to state-of-the-art
approaches, the models proposed by the author are able to include entire
image areas instead of only distinct features limited in terms of space. The
approaches use different means of representing the digital map data. On the
one hand, data equivalent to standardized map databases can be utilized.
On the other hand, aerial images can be used as well.

The presented approaches are evaluated using real-world data. For this
purpose, measurements were provided by a test vehicle and an extensive
test drive. The results of the algorithm are compared to a ground-truth
reference. It is shown that the approach proposed by the author can achieve
lane-level accuracy of the position information in urban environments using
the given sensors. This enables new kinds of applications, at the same time
keeping the costs for such system feasible.

Furthermore, the work at hand presents two additional approaches for
solving relevant partial problems in the domain of vehicle localization.
One method aims to remove systematic errors of vehicle motion sensors
in the process of estimating a vehicle’s ego motion. To achieve that, GPS
information is fused with motion data of a vehicle. The second application
derives accuracy requirements for a relative positioning system which is used
for cooperative localization in urban environments. It simulates vehicle-to-
vehicle communication and utilizes vehicle motion data as well as data of a
standardized digital map.
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()

J
K
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tg

14

Camera calibration matrix

Intrinsic camera parameters

Intensity value of the structure tensor
Image coordinates

Structure tensor

Kalman gain

Time index

Set of features of a digital map

Normally distributed random variable x with mean value
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Vehicle coordinates

Quantity of a vehicle



GLOSSARY

Yt

Zy

Velocity of a vehicle
Velocity over ground
Measurement noise vector
World coordinates
Weight of i-th sample of a particle set
x-coordinate of a vehicle
State vector

Mean value of p (xx)
y-coordinate of a vehicle
Tangent offset
Measurement vector

Sequence of measurements zg to zg
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