Verfahrensentwicklung zur Bewertung und Beherrschung komplexitätsinduzierter Effizienzverluste

Von der Fakultät für Ingenieurwissenschaften
der Universität Bayreuth
zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von
Diplom-Wirtschaftsingenieur Univ. Andreas Kruse

aus Nürnberg

Erstgutachter: Univ.-Prof. Dr.-Ing. Rolf Steinhilper
Zweitgutachter: Univ.-Prof. Prof. eh. Dr.-Ing. Dr. h.c.

Dipl.-Wirtsch.-Ing. Wilfried Sihn

Tag der mündlichen Prüfung: 08.12.2015

Lehrstuhl Umweltgerechte Produktionstechnik Universität Bayreuth 2016

Fortschritte in Konstruktion und Produktion

herausgegeben von Prof. Dr.-Ing. Frank Rieg und Prof. Dr.-Ing. Rolf Steinhilper

Band 34

Andreas Kruse

Verfahrensentwicklung zur Bewertung und Beherrschung komplexitätsinduzierter Effizienzverluste

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bayreuth, Univ., Diss., 2015

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4353-2 ISSN 1612-2364

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Geleitwort der Herausgeber

Das erfolgreiche Industrieunternehmen von heute ist ein aktives Element der global zunehmend vernetzten Welt.

Mit hohem Innovationstempo steigern neue Märkte und Technologien die Arbeitsanforderungen, vergrößern neue Werkstoffe und Verfahren, die Informationstechnik und ein Wertewandel der Kundenwünsche aber auch die Gestaltungund Entfaltungsmöglichkeiten des Ingenieurs.

Die Konstruktion ist die Königsdisziplin des Ingenieurs. Die Produktion ist die technische Dienstleistung am König Kunde. Beide Aufgabenfelder zusammengenommen bilden den Kern des industriellen Wertschöpfungsprozesses.

Mit der hier vorgelegten Reihe "Fortschritte in Konstruktion und Produktion" ist es den Herausgebern ein Anliegen, Beiträge von wissenschaftlicher Seite zu fördern, die durch Entwicklung neuer Denkansätze, methodischer Vorgehensweisen und zugehöriger Instrumente die Leistungsfähigkeit der industriellen Wertschöpfung verbessern und erweitern. Nicht nur technische Lösungen, sondern auch ökonomische, ökologische und soziale Fortschritte stehen hierbei im Blickpunkt oder zumindest am Horizont.

Hierfür bietet die Fakultät für Angewandte Naturwissenschaften mit ihrer interdisziplinären Ausrichtung und Einbindung in die Universität Bayreuth ein glückliches Umfeld.

Das Engagement der beiden Herausgeber ist dort vertreten als

- Lehrstuhl für Konstruktionslehre und CAD
- Lehrstuhl für Umweltgerechte Produktionstechnik.

Mögen also die von uns betreuten Dissertationen, die in dieser Buchreihe erscheinen, zu den wünschenswerten Fortschritten in Konstruktion und Produktion beitragen.

Den Autoren der einzelnen Bände dieser Reihe sei für Ihre wissenschaftliche und redaktionelle Arbeit gedankt, den Lesern wünschen wir eine interessante Lektüre und hoffentlich manch wertvolle Anregung für eine erfolgreiche Anwendung der Forschungsergebnisse in ihrer beruflichen Praxis.

Prof. Dr.-Ing. Frank Rieg

Prof. Dr.-Ing. Rolf Steinhilper

Vorwort

König Kunde benimmt sich nicht immer majestätisch. Zumindest aus der Sicht produzierender Unternehmen, die die zunehmende Flut an Kundenwünschen in immerzu neue Produkte und Produktvarianten umsetzen und diese auch noch flexibel zu marktfähigen Preisen an ihre Kunden liefern müssen, ist dies zunehmend spürbar und stellt viele Unternehmen vor große Herausforderungen.

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter der Fraunhofer-Projektgruppe Prozessinnovation des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA sowie als Akademischer Rat auf Zeit am Lehrstuhl für Umweltgerechte Produktionstechnik der Universität Bayreuth. Die zunehmende Relevanz eines richtigen Umgangs mit Komplexität konnte in einer Vielzahl von Projekten mit produzierenden Unternehmen bestätigt werden und führte letztlich auch zur Fokussierung auf das Thema dieser Arbeit. Die Ergebnisse entstanden zu Teilen im Rahmen des Forschungsprojekts KonPrO – Komplexitätsbeherrschung zur nachhaltigen Produktion, das vom Bayerischen Staatsministerium für Wirtschaft und Medien, Energie und Technologie gefördert wurde.

Herrn Prof. Rolf Steinhilper, Ordinarius des Lehrstuhls für Umweltgerechte Produktionstechnik und Leiter der Fraunhofer-Projektgruppe Prozessinnovation, möchte ich an dieser Stelle aufrichtig für die Möglichkeit zur Durchführung dieser Arbeit sowie die Förderung über die Jahre hinweg danken. Herrn Prof. Wilfried Sihn danke ich für die Übernahme des Koreferats.

Mein Dank gilt darüber hinaus den Mitarbeiterinnen und Mitarbeitern der produzierenden Unternehmen für Anregungen und Impulse in den gemeinsamen Projekten und Workshops sowie für die Ermöglichung der umfassenden industriellen Erprobung des im Rahmen dieser Arbeit entwickelten Verfahrens. Ebenso danke ich meinen aktuellen bzw. ehemaligen Kollegen für die gemeinsame Bearbeitung der Industrie- und Forschungsprojekte sowie die anregenden Diskussionen und heiteren Momente. Dies gilt gleichfalls für alle wissenschaftlichen Hilfskräfte und Abschlussarbeiter für ihre Unterstützung.

Zu guter Letzt geht mein Dank an meine Familie, die mich seit jeher unterstützt hat.

Bayreuth, im Dezember 2015

Andreas Kruse

Inhalt

1 Motivation	1
2 Zielsetzung und Lösungsweg	6
2.1 Zielsetzung und Abgrenzung des Betrachtungsraumes	6
2.1.1 Zielsetzung der Arbeit	6
2.1.2 Abgrenzung des Betrachtungsraums	7
2.2 Lösungsweg	9
3 Stand der Erkenntnisse	11
3.1 Grundlagen und Begriffsbestimmung	11
3.1.1 Produktion und Produktionssystem	11
3.1.2 Komplexität und Komplexitätsmanagement in der Produktion	14
3.1.3 Zielgrößen einer nachhaltigen Produktion	18
3.1.4 Produktionsplanung und -steuerung sowie Optimierung von Produktionssystemen	21
3.2 Verursachungsgerechte Bewertung von Aufwänden	23
3.2.1 Kostenrechnung	23
3.2.2 Bewertung energetischer Zielgrößen	32
3.2.3 Zwischenfazit zur verursachungsgerechten Bewertung	37
3.3 Simulation	38
3.3.1 Ereignisdiskrete Simulation	38
3.3.2 System Dynamics Ansatz	41
3.3.3 Agentenbasierte Simulation	44
3.3.4 Zwischenfazit zur Simulation	45
3.4 Beschreibung komplexer Systeme durch Metamodelle	46
3.4.1 Statistische Versuchsplanung und polynomiale Metamodelle	47
3.4.2 Künstliche neuronale Netze	
3.4.3 Weitere Ansätze zur Erstellung von Metamodellen	
3.4.4 Zwischenfazit zu Metamodellen	53
3.5 Zusammenfassende Bewertung bestehender Ansätze hinsichtlich der Zielsetzung	53
4 Konzeption eines Verfahrens zur Bewertung und Beherrschung komplexitätsinduzie Effizienzverluste	
4.1 Anforderungen an das Verfahren	55
4.2 Gewählter Ansatz und methodisches Vorgehen	
4.2.1 Modellierung des Produktionssystems aus generischen Prozessmodulen	
4.2.1 Modellierung des Froduktionssystems aus genenschen Frozessinodulen	39

4.2.2 Verursachungsgerechte Zuordnung von Aufwänden durch betriebszustandsbasierte Ablauflogik	61
4.2.3 Experimentbasierte Ermittlung des Systemverhaltens	
4.2.4 Metamodellbasierte Maßnahmenpriorisierung	
5 Ausarbeitung der Systematik für eine verursachungsgerechte Bewertung	72
5.1 Datenbasis	72
5.2 Ermittlung der produktionsprogrammspezifischen Outputmengen der Prozessmodule	74
5.3 Berechnung der ökonomischen Zielgröße Kosten eines Produktionsprogramms	77
5.3.1 Aufbereitung der kostenspezifischen Eingangsdaten	
5.4 Berechnung der ökologischen Zielgröße Energie eines Produktionsprogramms	92
5.4.1 Aufbereitung der energiespezifischen Eingangsdaten	
5.5 Zusammenführung der Systematik für eine verursachungsgerechte Bewertung	
6 Simulationsunterstützte Beschreibung des Systemverhaltens bei Änderung produktionsexterner und -interner Einflussgrößen	105
6.1 Integration in eine Simulationsumgebung	105
6.1.1 Auswahl der Simulationsumgebung und Modellierung von Prozessmodulen	
6.1.2 Umsetzung der entwickelten Bewertungssystematik in der Simulationsumgebung	
6.2 Versuchsplanungsbasierte Ableitung von Metamodellen zur Beschreibung des Systemverha	
6.2.1 Auswahl und Erstellung des Versuchsplans	110
6.2.2 Durchführung der Simulationsexperimente	
6.2.3 Ableitung der Metamodelle	
6.2.4 Bewertung und Auswertung der Wirkzusammenhänge sowie Maßnahmenpriorisierung	-
6.3 Überführung der Metamodelle in ein Anwenderwerkzeug	123
7 Industrielle Erprobung und Validierung bei einem metallverarbeitenden Unternehmen Konsumgüterbranche	
7.1 Ausgangssituation im Unternehmen	125
7.2 Anwendung des entwickelten Vorgehens zur Bewertung und Beherrschung komplexitätsinduzierter Effizienzverluste	127
7.2.1 Datenerfassung und Modellierung des Produktionssystems	127
7.2.2 Definition des Untersuchungsrahmens, Experimentdurchführung und -auswertung	131
7.2.3 Maßnahmenpriorisierung und Handlungsempfehlungen	139
7.3 Beurteilung der industriellen Erprobung	141

Inhalt

7.4 Diskussion des Verfahrens in Hinblick auf die gestellten Anforderungen	144
3 Zusammenfassung und Ausblick	147
9 Conclusion and Outlook	150
10 Abkürzungsverzeichnis	153
11 Verzeichnis der Formelzeichen	155
12 Abbildungsverzeichnis	163
13 Tabellenverzeichnis	165
14 Literaturverzeichnis	166
15 Anhang	183
15.1 Vorgehensweise bei einer Simulationsstudie nach VDI Richtlinie 3633	183
15.2 Techniken zur Verifikation und Validierung	184
Lebenslauf	186