Nuria Campillo-Davo, Ahmed Rassili (eds.)

NVH Analysis Techniques for Design and Optimization of Hybrid and Electric Vehicles

Shaker Verlag Aachen 2016

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Copyright Shaker Verlag 2016

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-4356-3

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

COST is supported by the EU Framework Programme Horizon 2020

Editors in chief: Nuria Campillo-Davo and Ahmed Rassili

Editorial board:

Bert Pluymers, Simone Delvecchio, Jan Rejlek, Stephen Walsh, Miguel Sánchez-Lozano, Nuria Campillo-Davo, Ahmed Rassili, Peter Cocron, Álvaro García-del-Castillo, Jan-Welm Biermann, Athanassios Mihailidis, Ramón Peral-Orts, Stephanos Theodossiades, Paul Borza, Sofia Sanchez-Mateo, Etienne Parizet, Karl Janssens, Jaime Ramis-Soriano, Pedro Poveda-Martínez and Andreia Pereira

This book is based upon work from COST Action TU1105 "NVH analysis techniques for design and optimization of hybrid and electric vehicles", supported by COST (European Cooperation in Science and Technology).

More information about COST Action TU1105 is available at:

www.cost.eu/COST_Actions/tud/TU1105

COST is a pan-European intergovernmental framework. Its mission is to enable break-through scientific and technological developments leading to new concepts and products and thereby contribute to strengthening Europe's research and innovation capacities.

It allows researchers, engineers and scholars to jointly develop their own ideas and take new initiatives across all fields of science and technology, while promoting multi- and interdisciplinary approaches. COST aims at fostering a better integration of less research-intensive countries to the knowledge hubs of the European Research Area. The COST Association, an International not-for-profit Association under Belgian Law, integrates all management, governing and administrative functions necessary for the operation of the framework. The COST Association has currently 36 Member Countries.

More information about COST is available at www.cost.eu

COST Action TU1105

Management Committee members

MC Chair ES Dr. Nuria CAMPILLO-DAVO	ncampillo@umh.es
MC Vice Chair BE Dr. Bert PLUYMERS	Bert.Pluymers@kuleuven.be
AT Dr. Jan REJLEK	Jan.Rejlek@v2c2.at
BE Dr. Ahmed RASSILI	a.rassili@ulg.ac.be
BG Prof. Kiril BARZEV	barzev@uni-ruse.bg
BG Prof. Vikenti SPASSOV	vikenti.spassov@yahoo.com
HR Prof. Josko DEUR	josko.deur@fsb.hr
CZ Dr. Matus SUCHA	matus.sucha@upol.cz
FR Dr. Laurent GAGLIARDINI	laurent.gagliardini@mpsa.com
FR Prof. Jerome ANTONI	jerome.antoni@insa-lyon.fr
DE Prof. Thilo BEIN	thilo.bein@lbf.fraunhofer.de
DE Prof. Jan-Welm BIERMANN	JanWelm.Biermann@ post.RWTH-Aachen.de
GR Prof. Athanassios MIHAILIDIS	amih@auth.gr
GR Prof. Ioannis ANTONIADIS	antogian@central.ntua.gr
IT Dr. Milena MARTARELLI	milena.martarelli@uniecampus.it
IT Dr. Emiliano MUCCHI	mccmln@unife.it
PL Prof. Stanislaw RADKOWSKI	ras@simr.pw.edu.pl
PL Dr. Tomasz BARSZCZ	tbarszcz@agh.edu.pl
PT Dr. Cecília ROCHA	carocha@fe.up.pt
PT Dr. Sandra MELO	sandra.melo@tecnico.ulisboa.pt
RO Prof. Dorin Dumitru LUCACHE	ddlucache@gmail.com
RO Prof. Paul Nicolae BORZA	borzapn@unitbv.ro
ES Dr. Alfonso FERNANDEZ-DEL-RINCON	alfonso.fernandez@unican.es
ES Dr. Miguel SANCHEZ-LOZANO	msanchez@umh.es
UK Prof. Stephen ELLIOTT	sje@isvr.soton.ac.uk
UK Dr. Stephanos THEODOSSIADES	S.Theodossiades@lboro.ac.uk

Management Committee substitutes

BE Dr. Karl JANSSENS	karl.janssens@siemens.com
BE Prof. Pierre DUYSINX	P.Duysinx@ulg.ac.be
DE Dr. Thomas BRUDER	thomas.bruder@lbf.fraunhofer.de
PL Mr. Adam GALEZIA	Adam.Galezia@simr.pw.edu.pl
PL Prof. Tadeusz UHL	tuhl@agh.edu.pl
ES Prof. Fernando VIADERO-RUEDA	fernando.viadero@unican.es
ES Dr. Ramon PERAL	ramon.peral@umh.es
UK Dr. Stephen WALSH	S.J.Walsh@Lboro.ac.uk

COST International Partner Countries

NZ Prof. Brian MACE	b.mace@auckland.ac.nz
BR Prof. Leopoldo DE-OLIVEIRA	leopro@sc.usp.br
US Prof. Vladimir VANTSEVICH	vantsevi@uab.edu

COST Action TU1105

List of Participating Institutions

	Country	Institution
1	AT	Virtual Vehicle Research Center
2	BE	KU Leuven
3	BE	SISW-Siemens
4	BE	University of Liège
5	BE	V2i - From Vibration to Identification
6	BG	University of Ruse
7	BG	University of Transport T. Kableshkov
8	BR	University of Sao Paulo
9	CZ	Palacky University in Olomouc
10	CZ	Transport Research Centre
11	DE	TU Chemnitz
12	DE	IKA - Institut fur Kraft-Fahr-Zeuge, Aachen University
13	DE	LBF Fraunhofer
14	ES	University of Alicante
15	ES	University of Cantabria
16	ES	University of Extremadura
17	ES	University Miguel Hernandez de Elche
18	FR	INSA-Lyon
19	FR	PSA-Peugeot
20	GR	National Technical University of Athens
21	GR	University of Thessaloniki
22	HR	University of Zagreb
23	IT	University of Ferrara
24	IT	Università Politecnica Delle Marche
25	IT	University eCampus
26	NZ	University of Auckland

27	PL	AGH University of Science and Technology
28	PL	Road and Bridge Research Institute
29	PL	Warsaw University of Technology
30	РТ	University of Coimbra
31	PT	University of Lisbon - Instituto Superior Tecnico
32	РТ	University of Porto
33	RO	Technical University of Iasi
34	RO	Transilvania University of Brashov
35	UK	Loughborough University
36	UK	University of Southampton
37	US	University of Alabama at Birmingham

Preface

The constantly increasing fossil fuel prices, the need to reduce transport-generated CO2 emissions and traffic noise and the striving to improve urban air quality have prompted the automotive industry to focus efforts on development of fuel efficient vehicle technologies. Amongst these technologies the development of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) is considered as most promising in solving both the economic and ecological concerns. To be competitive such vehicles must have an acceptable Noise, Vibration and Harshness (NVH) behaviour, not only inside the vehicle, but also outside with the requirement to guarantee safety of weaker road users such as two-wheelers and pedestrians. Most of the NVH design and problem-solving knowledge gathered since many years has concentrated on internal combustion vehicles and so there is a need to develop novel analysis techniques for vehicles with these new drives. It is significant that after many years spent in reducing noise one big challenge is now become the generation of sound by vehicles.

The reason of creation of TU1105 COST Action 'NVH analysis techniques for design and optimization of hybrid and electric vehicles' is the attempt to deal with this new and other challenges like accumulation, development and dissemination of novel analysis techniques in NVH of electric and hybrid vehicles.

Nowadays a common NVH issue for automotive companies is to assess robust experimental troubleshooting methodologies to decrease high timely-consuming trial and error procedures. In addition it is asked to multiphysics virtual tools to take advantage of experimental activities in developing optimal and efficient designs. The TU1105 COST Action consortium has promoted knowledge to solve these difficulties together with the goal to understand customer perceptions of the new NVH sources, treat the external sound generation issues for road users safety and evaluate the effect of the loss of noise & vibration masking from the currently implemented internal combustion engines

The Action 'NVH analysis techniques for design and optimization of hybrid and electric vehicles' was started in April 2012 (Memorandum of Understanding 4187/11) with 13 representatives from 8 countries, and then was enlarged to 23 entities from 14 countries. Currently, near the end of the fourth year, the network is composed by 37 entities from 17 countries, including 3 Non-COST Countries: New Zealand, Brazil and United States. The partners, Universities and Research Institutes, have brought together experienced

academic and early-stage researchers. Several short courses, seminar, training schools, short-time scientific missions have been performed in order to increase and join knowledge, exchange information and demonstrate new potential techniques. Several interactions with other COST Actions were made and research programme proposals have been set.

This book collects scientific and end of visit reports as results of the Action working activities dealing with state of art, test procedures, novel analysis techniques and methodologies. Both interior and exterior sound aspects have been treated together with the coupling of internal combustion engines with electric devices. From the experimental side, techniques for structural aspects (i.e source contribution identification, vibro-acoustic characterisation of lightweight materials, rotational dynamics system monitoring and new challenging virtual sensing approaches) together with exterior aspects (i.e. warning sound definition and dedicated sound quality metric development) are discussed. On the other hand numerical approaches to develop novel resonant metamaterials for acoustic insulation and predict sound field produced by emitting systems of hybrid powertrains are evaluated.

The results of the Action are intended to be as useful guidelines for future students, researchers, EU authorities, and industrial representatives coping with electric and hybrid vehicle NVH aspects for both environmental and technological future purposes.

The acknowledgement of all COST partners goes to EC and COST Office for support, cooperation and assistance for all Action duration. I would like to give a special thanks to Dr. Nuria Campillo and Dr. Bert Pluymers, respectively, actual Action Chair and Vice-Chair, who contributed to build, support and guide the Action with enthusiasm and competence. I wish also to thank Dr. Ahmed Rassili for his helpfulness in managing the economical and formal relationships with EC. Them with all researchers and academia experts involved in the consortium gave his contribution to the excellent achievements obtained by the Action.

Simone Delvecchio,

Action Proposer and First MC Chair of the TU1105 Action

Table of contents

Preface	
Contents	
Introduction	1
Chapter 1	
Electric and hybrid electric vehicles – the relevance of customer	5
expectations and preferences	3
Annex 1A : Methods to assess customer expectations related to vehicle noise, vibration and harshness	11
Annex 1B : Adoption of electric vehicles and impacts on noise,	11
energy consumption and air pollution – a review from Portugal	19
Annex 1C : Users' decision to buy HEV and EV – results from the	17
Czech Republic	31
	01
Chapter 2	
Overview of EV and HEV powertrains	37
-	
Chapter 3	
Experimental approaches for NVH study of Electric and Hybrid Electric	
Vehicles	61
Annex 3A : Transfer Path Analysis for vehicle NVH refinement:	
Application on EV / HEV vehicles	67
Annex 3B : Virtual sensing on mechatronic drivetrains using	
multiphysical models	99
Annex 3C : Numerical-experimental vibro-acoustic characterisation	
of lightweight materials using a novel test setup	113
Annex 3D : An inverse methodology for low-frequency	
transmission loss characterization of a lightweight panel in a small	
reverberant transmission suite	129
Annex 3E : NVH Signature Analysis of Electric Drive Systems	141
Annex 3F : Interior and exterior noise evaluation of bus concepts for	
public transportation	153
Annex 3G : Influence of electric vehicles in noise maps	165
Annex 3H : An innovative noise measurement method using OBSIe	177
Annex 3I : Multi-axial dynamic testing for	

design/functional/durability testing	189
Annex 3J : Experimental approaches for monitoring of rotational	
dynamics systems	203
Chapter 4	
Numerical Approaches for the NVH study of Electric and Hybrid	
Electric Vehicles	213
Annex 4A : Design and validation of a metamaterial acoustic	
enclosure	219
Annex 4B : Motion equations of mechanical systems used in	
common engineering applications	233
Annex 4C : Numerical prediction of the sound field produced by the	
alerting system of EVs and HVs using the BEM	255
Annex 4D : Equivalent material modelling of sandwich beam	
assemblies: propagating and evanescent wave considerations	267
Annex 4E : NVH Simulation of Electric Drivetrains: SRM Case	279
Annex 4F : CAE Approach to Electric Vehicle Warning Sound	
System Design	295
Annex 4F : Damage detection in the inertial dampers of the	
electrical vehicle using experimental modal identification	303
Chapter 5	
Sound Quality of Electric vehicles	
Annex 5A : Sound Quality inside Electric Vehicles	329
Annex 5B : Warning Sounds for Electric Vehicles	343
Annex 5C : Detectability of Warning Sounds for Electric Vehicles a	t
30 km/h	351
Conclusions & Next Steps	357