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Abstract ]

Abstract

Architectural tensile surface structures — often made from coated woven fabrics —
carry external loads only by activating tensile stress in the membrane plane, typically
in the form of biaxial stress states. One important and challenging aspect of structural
fabric analysis is the determination of stiffness parameters that sufficiently model the
stress-strain behaviour for these stress states. The particular difficulty is that coated
woven fabrics exhibit very complex stiffness behaviour. In general, it is nonlinear,
nonelastic and considerably anisotropic. Nevertheless, current membrane structure
design practice is based on a simplified orthotropic linear-elastic plane stress
relationship, where the elastic constants are “tensile modulus” and “Poisson’s ratio”.
The elastic constants must be determined for each material using biaxial tensile
tests.

The intention of the present work is to develop principles for determining elastic
constants that closely approximate the actual fabric stress-strain response for any
fabric structure and all common types of coated woven fabrics. The focus lies on the
most commonly utilised materials: PVC coated polyester fabrics and PTFE coated
glass fibre fabrics.

The foundation of the present work is a comprehensive survey of the structural
behaviour of all types of membrane structures — anticlastic, synclastic and plane — as
well as of the stiffness properties of coated woven fabrics for architectural
applications. Discussion of the mechanical background to the constitutive law for
orthotropic linear-elastic plane stress provides the frame of application for elastic
constants, particularly in relation to the boundaries of the Poisson’s ratios. An
analysis of internationally established biaxial test and evaluation procedures
identifies the strengths and weaknesses of current practice. Gaps in knowledge are
closed with experimental investigation into the full range of commonly used
architectural fabrics.

Combining all insights, principles for refined biaxial test and evaluation procedures
are stated with the objective of determining elastic constants for design purposes. As
a basic principle, procedures for anticlastic structures and for synclastic or plane
structures are developed separately. Their commonality lies in the fact that they are
based on what is defined as the stable state of the fabric. Using stable state elastic
constants makes it possible to calculate with the nominal prestress in the fabric
structure analysis.

Example application of the refined procedures illustrates that deviations between the
measured and calculated strain on a specific evaluation stress level are low
throughout. This is striking evidence that linear elastic constitutive law can actually be
very useful in approximating the stress-strain behaviour of all common PVC coated
polyester fabrics and PTFE coated glass fibre fabrics.
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Kurzfassung

Membrantragwerke — haufig hergestellt aus beschichteten Geweben — tragen ex-
terne Lasten nur durch Zugspannungen in der Membranebene ab, typischerweise in
Form von biaxialen Spannungszustdnden. Ein wichtiger und herausfordernder
Aspekt der Tragwerksberechnung ist die Bestimmung von Steifigkeitsparametern, die
das Spannungs-Dehnungs-Verhalten der Gewebe in diesen Spannungszustanden in
geeigneter Weise modellieren. Dies gestaltet sich fur beschichtete Gewebe wegen
ihres sehr komplexen Steifigkeitsverhaltens &ufierst schwierig. Im Allgemeinen
verhalten sich Gewebe nichtlinear, nichtelastisch und deutlich anisotrop. Gleichwohl
basiert die aktuelle Membranbaupraxis auf einem vereinfachten orthotropen, linear-
elastischen, ebenen Materialgesetz, das auf den elastischen Konstanten “Ver-
formungsmodul” und Querkontraktionszahl beruht. Die elastischen Konstanten
missen fiir jedes Material in biaxialen Zugversuchen bestimmt werden.

Das Ziel der vorliegenden Arbeit ist die Entwicklung von Prinzipien zur be-
messungsorientierten Bestimmung elastischer Konstanten derart, dass sie das
tatsachliche Spannungs-Dehnungs-Verhalten von allen tblichen Architekturgeweben
fur alle Tragwerksformen gut approximieren. Der Fokus liegt dabei auf den
gebrauchlichsten Produkten: PVC-beschichtete Polyestergewebe und PTFE-be-
schichtete Glasfasergewebe.

Das Fundament der vorliegenden Arbeit ist sowohl eine umfassende Studie des
Tragverhaltens aller typischen Membranbauformen — antiklastisch, synklastisch und
eben — als auch der Steifigkeitseigenschaften der Architekturgewebe. Eine Erdrter-
ung des mechanischen Hintergrunds zum orthotropen, linear-elastischen Material-
gesetz bei Anwendung auf den ebenen Spannungszustand liefert die Randbe-
dingungen fur die Anwendung der elastischen Konstanten, besonders im Bezug auf
Grenzwerte fiir die Querkontraktionszahlen. Eine Analyse internationaler Biax-
Versuchs- und Auswerteprozeduren identifiziert die Starken und Schwachen der
aktuellen Praxis. Vorhandene Wissenslicken werden durch experimentelle Unter-
suchungen an der ganzen Bandbreite der gebrduchlichen Gewebetypen fir die tex-
tile Architektur geschlossen.

Aus der Kombination aller Erkenntnisse werden Prinzipien fur fundierte Biax-
Versuchs- und Auswerteprozeduren abgeleitet. Das Ziel ist die Bestimmung von
elastischen Konstanten, die als Eingangsparameter in der Bemessung dienen.
Grundsatzlich wird zwischen Prozeduren fur antiklastische und synklastische bzw.
ebene Strukturen unterschieden. Beiden ist allerdings gemein, dass sie den “einge-
spielten Zustand eines Gewebes” nutzen. Erst die Nutzung von elastischen
Konstanten im eingespielten Zustand ermdglicht es, die Strukturberechnungen auf
den nominellen Vorspannungszustand zu griinden.

Beispielhafte Anwendungen der weiterentwickelten Prozeduren verdeutlichen, dass
die Abweichungen zwischen gemessenen und berechneten Dehnungen auf einem
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zuvor fur die Auswertung definierten Spannungshorizont durchweg klein sind. Dies
zeigt eindrucksvoll, dass das linear-elastische Materialgesetz durchaus sehr geeignet
ist, auch das Spannungs-Dehnungs-Verhalten aller typischen PVC-beschichteten
Polyester- und PTFE-beschichteten Glasfasergewebe zu beschreiben.
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Symbols

Latin

E

Young’s modulus for material in [N/mm?] or

tensile modulus for a structural component such as the composite coated fabric,
here in [kN/m], or

error in conjunction with the correlation analysis routine [%]

f tensile strength [kN/m] or
deflection

G  shear modulus [KN/m]

n load cycle number [-]

p prestress [kN/m]

Greek

Ae strain difference between final strain and starting strain during a loading
sequence or within a chosen stress interval [%]

Ac  stress increment or stress interval [KN/m]

€ strain [%]

o  membrane stress, given in force per unit width [kN/m] as no defined section
height exists

vxy warp Poisson’s ratio describing strain in warp direction due to stress in fill
direction [-], assuming that warp is aligned with x and fill is aligned with y

wyx fill Poisson’s ratio describing strain in fill direction due to stress in warp direction

[-], assuming that warp is aligned with x and fill is aligned with y
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Latin

c carrying direction in anticlastic structures

d design value

e evaluation level

f fill direction

i initial

irr irreversible

k characteristic value

m mean value

r,del delayed reversible (viscoelastic)

r,spon  spontaneous reversible (elastic)

S supporting direction in anticlastic structures

t tensile

w warp direction

X,Y,Z coordinate directions
x-direction in the mechanical model is aligned with the warp direction in the
fabric, y-direction in the mechanical model is aligned with the fill direction in
the fabric

Greek

€ strain

&n.g coordinate directions

Numerical

23 room temperature 23°C
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Abbreviations

LSM Least Squares Method

PA  polyamide

PE  polyethylene

PES polyester

PET polyethylene terephthalate

PTFE polytetrafluoroethylene

PVC polyvinylchloride

SIR  stress increment ratio

THV tetrafluoroethylene-hexafluoropropylene-vinylidene-fluoroide

UV  ultraviolet





