Methodik zur Auslegung von Klebverbindungen mit variabler Klebschichtdicke

Design Methodology for Bonded Joints with Varying Adhesive Thickness

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines **Doktors der Ingenieurwissenschaften** genehmigte Dissertation

vorgelegt von

André Gabener

Berichter: Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder

Univ.-Prof. Dr.-Ing. Uwe Reisgen

Tag der mündlichen Prüfung: 28.06.2016

Aachener Berichte aus dem Leichtbau herausgegeben von Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder

Band 3/2016

André Gabener

Methodik zur Auslegung von Klebverbindungen mit variabler Klebschichtdicke

Design Methodology for Bonded Joints with Varying Adhesive Thickness

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2016)

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4681-6 ISSN 2509-663X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner wissenschaftlichen Tätigkeit am Institut für Strukturmechanik und Leichtbau in den Jahren 2009 bis 2015. Ideengeber für die innerhalb dieser Arbeit diskutierte Forschungsfrage war maßgeblich das Raumfahrtprojekt iBOSS (intelligent Building Blocks for On-Orbit Satellite Servicing) mit dessen Bearbeitung ich den Großteil meiner Zeit am Institut betraut war.

Ich möchte an dieser Stelle den Personen danken, die direkt oder indirekt zur erfolgreichen Vollendung dieser Arbeit beigetragen haben.

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. Kai-Uwe Schröder. Vielen Dank für die intensive Betreuung und zielgerichteten fachlichen Diskussionen während der Erstellung dieser Arbeit.

Mein Dank gilt Herrn Prof. Dr.-Ing. Uwe Reisgen für die Übernahme des Koreferats sowie Frau Prof. Dr.-Ing. Kirsten Bobzin für die Übernahme des Prüfungsvorsitzes.

Weiterhin möchte ich allen Mitarbeitern und Studenten des Instituts für Strukturmechanik und Leichtbau danken, die sowohl durch ihre fachlichen als auch privaten Beiträge diese Arbeit ermöglicht und die Zeit abseits der Arbeit sehr angenehm gestaltet haben. Die Kollegialität untereinander habe ich sehr geschätzt und ist keineswegs selbstverständlich. Ich werde die Zeit am Institut stets in sehr guter Erinnerung behalten.

Ich danke meiner Familie dafür, dass Sie meinen beruflichen Weg ermöglicht und mich nach allen Kräften unterstützt hat. Nicht zuletzt bei der Korrektur dieser Arbeit. Ich weiß es sehr zu schätzen, alle notwendigen Freiräume bekommen und stets den erforderlichen Rückhalt erfahren zu haben.

Ein besonderer Dank zum Abschluss gilt meiner Frau Kathrin. Ich danke ihr für ihre Geduld und ihr Verständnis während der Jahre meiner sich auf das Wochenende beschränkenden Anwesenheit. Dies hat mir bei der Verfolgung meines persönliches Zieles sehr geholfen.

Essen, im Juli 2016 André GABENER

Kurzfassung

Innerhalb dieser Arbeit wird die Entwicklung einer konsistenten Gesamtmethodik zur Auslegung von dickschichtigen strukturellen Klebverbindungen vom Entwurf über die Berechnung bis zum Nachweis und Qualifizierung vorgestellt. Die Arbeit enthält hierzu sowohl theoretische und numerische als auch experimentelle Anteile. Existierende numerische sowie experimentelle Ansätze werden vergleichend gegenübergestellt, kritisch diskutiert und bewertet. Es wird untersucht, welche Besonderheiten bei der Ermittlung erforderlicher Kennwerte zu Charakterisierung von dickschichtigen Klebverbindungen Berücksichtigung finden müssen. Bereits normierte Versuche, wie der DCB-Versuch, werden vor dem Hintergrund analysiert, ob die ursprünglich für dünnschichtige nicht-metallische Klebverbindungen getroffenen Annahmen und Grundlagen hier ebenfalls angewendet werden können. Von Bedeutung ist hierbei unter anderem der Einfluss möglicher plastischer Verformungen der Fügeteile sowie die Spannungsverteilung über der Klebschichtdicke. Weiterhin wird ein in der Literatur noch nicht hinreichend beschriebener Versuch (Arcan-Test) durch ergänzende numerische und experimentelle Analysen hinsichtlich seiner Verwendbarkeit zur Kennwertermittlung untersucht.

Die Arbeit baut hierbei auf der Diskussion relevanter lokaler sowie globaler Einflussfaktoren auf. Hierbei wird untersucht und aufgezeigt, welche grundlegenden Einflussgrößen bei der Auslegung dickschichtiger Klebverbindungen berücksichtigt werden müssen. Es wird gezeigt, wie die Randbedingungen, z. B. durch die Geometrie der Klebverbindung, den Spannungszustand innerhalb der Klebverbindung beeinflussen. Für zylindrische Rohrverbindungen wird ein eindimensionales Ersatzmodell entwickelt, dass eine effiziente Berechnung ermöglicht.

Die Arbeit schließt mit einer Validierung der entwickelten Methodik, wobei vier unterschiedliche Lastfälle diskutiert werden.

Schlagwörter: Finite Elemente Methode, Klebverbindung, Bruchmechanik, Materialkennwertermittlung, Auslegungsmethode.

Abstract

Within this thesis, a methodology to design thick adhesive bonds is developed. The methodology considers the entire design process from preliminary design until qualification. Therefore this work consists of theoretical and numerical as well as experimental parts. Existing numerical and experimental approaches are compared, discussed and finally assessed. The investigation focusses on effects that have to be considered in context of thick adhesive bonds. Existing and standardized test methods as the DCB-test were originally developed to determine the interlaminar fracture toughness of FRP specimens. Within this work it is analyzed and checked, whether the underlying assumptions are still valid when metallic adherents are used. Especially the influence of plastic deformation within the substrates and the stress distribution within the adhesive layer are of concern. Furthermore a not yet standardized test set-up (Arcan test) will be investigated by means of both numerical and experimental test. The applicability to determine required material properties will be shown.

Basis for this work is the discussion of relevant local and global influence factors. It is investigated and shown which parameters have to be considered during the design process of thick adhesive bonds. It is shown how boundary conditions such as the geometry influence the stress distribution within the adhesive layer. For cylindrical hollow cross-sections a simple model is developed that allows the simplification of 3D models to simple 1D models. The model considers the stiffness of the cross-section using an elastic foundation.

The thesis closes showing the validation of the developed methodology where four different load cases are considered.

Keywords: Finte Element Method, Adhesive Bonding, Fracture Mechanics, Material Parameter, Design Method

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Motivation	3
	1.2	Stand der Technik	4
		1.2.1 Experimentelle Methoden	5
		1.2.2 Analytische und numerische Methoden zur Spannungsberechnung	9
			11
	1.3	Diskussion des Stands der Technik am Beispiel von SLJ Stahlproben	13
		1.3.1 Experimentelle und numerische Untersuchung	14
		1.3.2 Vergleich der Ergebnisse	15
	1.4	Problemstellung	16
	1.5	Zielsetzung und Gliederung der Arbeit	18
2	Gru	ndlagen und lokale Einflussgrößen auf das Klebschichtverhalten	23
	2.1	Einsatz von Klebverbindungen in der heutigen industriellen Anwendung	23
	2.2	Lastfälle und Spannungsverläufe in Klebverbindungen	24
		2.2.1 Lastfälle	24
		2.2.2 Spannungsverteilung in Überlappungsklebungen	26
	2.3	Versagensmuster	29
	2.4	Einfluss der Klebschichtdicke	31
	2.5	Einfluss der Geometrie des Klebschichtauslaufs	32
	2.6	Einfluss hybrider Verbindungen	34
	2.7	Einfluss der Oberflächeneigenschaften	35
		2.7.1 Die Grenzschicht zwischen Fügeteil und Klebschicht	35
		81	38
	2.8	8 1 8	40
	2.9	Zusammenfassung und Bewertung	41
3	Einf	luss globaler geometrischer Eigenschaften & Randbedingungen	43
	3.1		45
			46
			47
			48
	3.2	,	50
			51
		2.2.2. Vergleich analytischer und numerischer Berechnungen	52

x Inhaltsverzeichnis

		3.2.3	Die zylindrische Rohrverbindung idealisiert durch ein 2D-Ersatzmodell	54
	3.3		s Schubfeld	56
	3.4	Zusam	menfassung und Bewertung	59
4	Nun	nerische	e Modellierungsstrategien	61
	4.1	Bruchi	mechanische Beschreibung des Klebschichtversagens	61
		4.1.1	Mixed-Mode Verhalten	66
		4.1.2	Ebener Spannungs- und ebener Verzerrungszustand	67
	4.2	Numer	rische Methoden basierend auf der Bruchmechanik	68
	4.3	Verwe	ndete Modellierungsvarianten	70
		4.3.1	Modellierungsvariante 1 - Rein kohäsiv	70
		4.3.2	Modellierungsvariante 2 - Gemischt kohäsiv	71
		4.3.3	Modellierungsvariante 3 - Kontakt	72
		4.3.4	Modellierungsvariante 4 - xFEM	73
5	Ent	wicklun	g einer konsistenten Versuchs - und Auslegungsmethodik	75
	5.1	Genori	mte Prüfverfahren	76
		5.1.1	Zugversuch an reinen Klebstoffproben	76
		5.1.2	Zugversuche an Stumpfstoßverbindungen	77
		5.1.3	Scherprüfung mit dicken Fügeteilen	78
		5.1.4	Stumpf verklebte Hohlzylinder	80
		5.1.5	Iosipescu–Versuch	81
		5.1.6	DCB-Versuch	82
		5.1.7	ENF-Versuch	87
		5.1.8	MMB-Versuch	89
		5.1.9	Bewertung der genormten Versuche	93
	5.2	Nicht g	genormte Prüfverfahren & Methoden zur Versuchsauswertung	94
		5.2.1	Auswertung des DCB-Versuchs mit Hilfe des J-Integrals	94
		5.2.2	Anwendung des J-Integrals auf den ENF-Versuch	98
		5.2.3	ELS-Versuch	100
		5.2.4	CLS-Versuch	101
		5.2.5	MCB-Versuch	102
		5.2.6	Arcan-Versuch	103
	5.3	Numer	rische und experimentelle Erprobung des Arcan-Tests	105
		5.3.1	Vergleich von 2D & 3D Modellen	106
		5.3.2	Einfluss des Versuchsaufbaus	107
		5.3.3	Einfluss der Fügeteilgeometrie	108
		5.3.4	Einfluss der Kerben in der Klebschicht	113
		5.3.5	Einfluss der thermalen Eigenspannungen	118
		5.3.6	Vorbereitung der experimentellen Untersuchung	120
		5.3.7	Versuchsergebnisse	121
		5.3.8	Analyse der Ergebnisse & Bewertung	123

Inhaltsverzeichnis xi

		5.3.9 Neukonstruktion der Vorrichtungen	125
	5.4	Zusammenfassung und Gesamtbewertung experimenteller Verfahren	126
	5.5	Klebschichtmodell	129
	5.6	Methodik zu Auslegung dicker Klebverbindungen	131
6	Vali	dierung der Auslegungsmethodik	135
	6.1	Technische Ausrüstung, Materialien und Prozessschritte	135
		6.1.1 Versuchsausrüstung	135
		6.1.2 Materialien	136
		6.1.3 Probenvorbereitung und Herstellung	137
	6.2	Versuche an SLJ-Proben	139
	6.3	DCB-Versuche	143
		6.3.1 Proben	143
		6.3.2 Auswertung der Ergebnisse	144
		6.3.3 Bewertung der DCB-Versuchsergebnisse	147
	6.4	Arcan-Versuche	148
		6.4.1 Arcan-Test - 0° -Versuche (Zug)	149
		6.4.2 Arcan-Test - 90° -Versuche (Schub)	151
		6.4.3 Arcan-Test - 45° -Versuche (Schub/Zug)	154
		6.4.4 Zusammenfassung und Bewertung	155
	6.5	Zusammenfassung der ermittelten Materialkennwerte	156
	6.6	Numerische Berechnungen	157
		6.6.1 Ebener Verformungs- vs. ebener Spannungszustand	158
		6.6.2 Konvergenzverhalten	160
	6.7	Vorstellung und Diskussion der numerischen Berechnungen	162
		6.7.1 SLJ	162
		6.7.2 DCB	165
		6.7.3 Arcan	168
		6.7.4 SLJ auf elastischer Bettung	169
	6.8	Zusammenfassung	169
7	Fazi	t und Ausblick	171
Li	teratı	ır	177
Λ	Anh	ang	189
A		Numerische Modelle	189
	A.1		190
		Konstruktionszeichungen, Pobenabmessungen und Versuchsaufbauten	191
		Experiment	197
	Λ.+	Experiment	17/

Abbildungsverzeichnis

1.1	Ausschnitt eines SLJ mit angreifenden Schnittkräften	5
1.2	Arcan-Versuchsvorrichtung - Version 1.0	7
1.3	Schritte zur Vorbereitung der SLJ Stahlproben	14
1.4	Hauptdehnungen gemessen mit Aramis (oben), verwendetes Sprenkelmuster	
	(Mitte) und Bruchbilder der SLJ-Proben	16
1.5	Vergleich experimenteller und numerischer Versagenslasten für SLJ	17
2.1	Beispiele für vorteilhaftes und nachteiliges Design von Klebverbindungen [58]	25
2.2	Grundlegende Belastungsarten von Klebverbindungen [59]	26
2.3	Dehnungs- und Spannungsverteilung innerhalb der Klebschicht für ideal steife	
	und nachgiebige Fügeteile	26
2.4	Doppelt überlappte Klebverbindung idealisiert als Dreigurtscheibe	27
2.5	Spannungsverteilung am Klebschichtende mit und ohne Harzüberschuss [40]	
	sowie Ort der Rissinitiierung und des Verlaufs [61]	28
2.6	Rissverläufe innerhalb einer Klebschicht [66] & [67]	30
2.7	Substratnahe Versagensmuster nach Stieglitz [52]	31
2.8	Festigkeit der einfach überlappten Klebverbindung in Abhängigkeit der Kleb-	
	schichtdicke [33]	32
2.9	Analytisch und experimentell ermittelter Rissverlauf in rechtwinklig auslaufenden Überlappungsklebungen (a)) [8] und Verlagerung des Singularitätspunkts	
	in Abhängigkeit der Geometrie (b)-d)) [71]	33
2.10	Qualitativer Verlauf der Schubverformung über der Klebschichtdicke [33]	35
	Schichtenaufbau eines Metall-Polymer-Verbundes nach Bischof [75]	36
	Alu-Bleche mit Bohrungen zur Herstellung von SLJ's	38
3.1	Anwendungsbeispiele für strukturelle Klebungen	44
3.2	Ausgewertete Pfade in SLJ und Schub- (links) sowie Schälspannungen (rechts)	
	entlang Pfad I für SLJ und DLJ	49
3.3	Schubspannungsverläufe im SLJ für unterschiedliche Klebschichtdicken (links)	
	und Schäl- bzw. Schubspannungsverlauf über der Klebschichtdicke entlang Pfad	
	II für SLJ (rechts)	51
3.4	Zylindrische Rohrverbindung	51
3.5	Spannungslauf innerhalb der Klebschicht eines SLJ unter axialer Last für Solid-	
	Solid und Shell-Solid Modellierung	53
3.6	Schälspannungen (links) und Schubspannungen (rechts) entlang der Klebschicht	
	in SLJ, DLJ & Rohrverbindungen	54

3.7	Idealisierung der zylindrischen Rohrverbindung als SLJ auf elastischer Bettung und Modell zur Ermittlung der Bettungskennziffer	54
3.8	Mises Vergleichsspannungen entlang der Klebschicht in zylindrischen Rohrver-	56
2.0	bindungen - 3D Modelle & 2D mit elastischer Bettung	56
3.9	Analysierte Schubwand mit Submodell	57
3.10	Analysiertes Submodel der Klebverbindung mit analysiertem Pfad sowie den Spannungen entlang des Pfades	58
4.1	Rissöffnungsarten	62
4.2	J-Intergal	63
4.3	Risswachstum in duktilen Werkstoffen durch Vereinigung von Fehlstellen und	
	Poren a) sowie in spröden Materialien wie z.B. CFK b)	64
4.4	Unterschiedliche Idealisierungen des Kohäsivzonenverhaltens	65
4.5	Beschreibung des bilinearen Kohäsivzonenansatzes	65
4.6	Kohäsivzonengesetz für Mixed-Mode Belastung	66
4.7	Plastische Einflusszone für ebenen Spannungs- und ebenen Verformungszustand	68
4.8	Modellierungsvariante 1: Modellierung der Klebung mit kohäsiven Elementen	
	- Beispiele für $t_K = 0,2$ mm und $t_K = 1,0$ mm	71
4.9	Modellierungsvariante 2: Modellierung der Klebung mit einem gemischten An-	
	satz - kohäsive Elemente innerhalb der Grenzschicht, Kontinuumselemente für	
	den Klebschichtbereich dazwischen	72
4.10	Modellierungsvariante 3: Idealisierung der Versagenszone innerhalb der Grenz-	
	schicht über eine Kontaktbedingung	72
4.11	Modellierungsvariante 4: Berechnung der Rissinitiierung sowie des Rissfort-	
	schritts mit Hilfe der xFEM	73
5.1	Versuchsaufbau der Scherprüfung mit dicken Fügeteilen DIN EN 14869-2 [115]	79
5.2	Stumpf verklebter Hohlzylinder zur Torsionsprüfung nach DIN EN 14869-1	80
5.3	Iosipescu Versuchsaufbau [120]	81
5.4	Varianten des DCB-Versuchs [25]	83
5.5	Einflusszone vor Rissspitze durch unterschiedliche Fügeteilsteifigkeit	84
5.6	DCB Vorversuch: a) Aufbau, b) Bruchfläche mit Farbeindringmittel und c) Er-	
	gebnisse der Energiefreisetzungsrate mit CBT	86
5.7	Abhängigkeit der Energiefreisetzungsrate nach Biel [129] (links) und Lee [130]	
	(rechts)	87
5.8	Verformung der ENF-Probe	87
5.9	MMB-Test: a) Versuchsaufbau mit belasteter Probe, b) Bruchfläche und c) aus-	
	gewertete Energiefreisetzungsraten	90
5.10	Last-Verformungskurven der MMB-Versuche für unterschiedliche Klebschicht-	
	dicken	91
5.11	Numerisches Modell der MMB-Probe mit Spannungsverteilung sowie Richtung	
	der Hauptspannungen innerhalb der Klebschicht	92

	Konturintegral zur Auswertung des J-Integrals [132]	95
5.13	Bruchenergie (links) und Spannungs-Verformungs-Verlauf nach J-Integral für	
	unterschiedliche Dicken [133]	96
5.14	Energiefreisetzungsrate für unterschiedliche Klebschichtdicken nach J-Integral-	
	methode gemäß Marzi [18]	97
5.15	Kraft-Verformungs-Verlauf (links) sowie Verdrehwinkel des Kraftangriffspunkts	
	während des Verformungsvorgangs (rechts) für DCB-Proben mit unterschiedli-	
	chen Klebstoffversagensspannungen	99
5.16	Abmessungen der ENF-Probe und ausgewertete J-Integrale für unterschiedliche	
	Fügeteilgeometrien	100
	Geometrie der ELS (End-Loaded Split) Probe	101
	Form und Belastung der CLS-Probe [28]	101
	Der MCB-Versuch (Mixed mode double Cantilever Beam)	102
	Spannungsverteilung im 3D-Arcan-Modell	106
	Exzentrische Randbedingungen unter reiner Zugbelastung	107
	Spannungsverläufe für unterschiedliche Exzentrizitäten und Randbedingungen	109
5.23	Geometrien der untersuchten Arcan-Proben mit unterschiedlichen Klebschicht-	
	dicken und Radien am Fügeteil	110
	Spannungsüberhöhung in Arcan-Proben unter Zugbelastung	110
	Spannungsüberhöhung in Arcan-Proben unter Schubbelastung	111
5.26	Normierte Spannungen entlang der Grenzschicht für Arcan-Proben unter Zug-	
	(links) und Schubbelastung (rechts)	112
	Modellierungsvarianten der Kerben und Fügeteilgeometrien	114
5.28	Mises Vergleichsspannung in Arcan-Probe mit und ohne schwindungsbedingter	
	Kerbe für Proben mit $t_K = 1, 1 \text{ mm}$	115
5.29	Spannungen entlang Klebschichtmittellinie für Arcan-Proben mit Schwindungs-	
	effekt und unterschiedlichen Klebschichtdicken	116
5.30	Max. Vergleichsspannung im Zentrum sowie in der Grenzschicht für $t_k = 0,3$ mm	
	(links) und $t_k = 1, 1$ mm (recht) - Schraffierte Ergebnisse für Fügeteil mit Kerbe	117
	Mises Vergleichsspannung in Arcan-Probe durch thermale Einflüsse	119
	a) Versuchsaufbau und b)-f) Proben der ARCAN-Vorversuche	121
	Ergebnis der Aramis-Verformungsmessung zu unterschiedlichen Laststufen	122
5.34	Last-Verformungskurven der Arcan-Proben (links) sowie von der Klebschicht	
	aufgenommene Energie (rechts) für unterschiedliche getestete Klebschichtdi-	
	cken	123
	Vorrichtungen zum Aushärten der Arcan-Proben - Version I und II	125
	Prüfvorrichtung zum Einspannen der Arcan-Proben - Version I und II	126
	Prüfvorrichtung in unterschiedlichen Belastungswinkeln	127
	Theoretisches Klebschichtmodell	130
	Methodik zur Auslegung für Fall A	133
5.40	Methodik zur Auslegung für Fall B	134

6.1	Versuchsausrüstung	136
6.2	Unterschiedliche Stufen während der Probenvorbereitung	139
6.3	Bruchflächen der SLJ-Stahlproben mit einer Klebschichtdicke von $t_K = 0,2$ mm	
		41
6.4	Von Mises Dehnungen in einem SLJ mit $t_K = 0.9$ mm ausgewertet mit Aramis	
	& Last-Verformungskurven unterschiedlicher SLJ mit $t_K = 0.2$ mm & $t_K =$	
		42
6.5	Versuchsaufbau für DCB-Versuche	43
6.6	Präparierte DCB-Probe	44
6.7	Bruchflächen ausgewählter DCB-Proben mit unterschiedlichen Klebschichtdicken 1	45
6.8	Bruchflächen ausgewählter DCB-Proben mit Risseindringmittel	45
6.9	G _I nach CBT abhängig von der Risslänge für Proben 2_1 & 3_1 (links) und G _I	
	für unterschiedliche Probengeometrien ausgewertet mit J-Integral (rechts) 1	47
6.10	Auswertung G _I mit J-Integral für Proben 2_1 & 3_1 (links) und Proben 3_1 &	
	3_02 (rechts)	48
	\mathcal{E}	49
6.12	Versagensspannung der 0° Arcan-Proben bezogen auf die ursprüngliche Fläche	
		50
6.13	Schwindungsbedingte Kerben der Arcan-Proben	50
6.14	Bruchbilder der Arcan-Proben getestet unter 0° Belastung	51
6.15	Bruchbilder von Arcan-Proben unter 90° Belastung	52
6.16	Versagensspannung der 90° Arcan-Proben bezogen auf ursprüngliche Fläche	
	(links) sowie bezogen auf reale Fläche (rechts)	53
6.17	Last-Verformungskurve unter reiner Schubbelastung absolut (links) sowie nor-	
	miert auf Klebschichtdicke (rechts)	53
6.18	Angenäherte Spannungs-Dehnungskurve für Araldite 2015	55
6.19	Versagensspannung der 45° Arcan-Proben bezogen auf ursprüngliche Fläche	
	(links) sowie die real tragende Fläche (rechts)	55
6.20	3D-Modell des SLJ und Dehnungen sowie Spannungen entlang ausgewerteter	
	Pfade	59
	8	61
6.22	Kraft-Verformungsverläufe der SLJ aus Versuch und Numerik - links $t_K =$	
	$0,2 \text{ mm}$, rechts $t_K = 0,9 \text{ mm}$	64
6.23	Spannungszustand und Rissverlauf eines SLJ, modelliert mit der xFEM-Methode 1	64
6.24	Plastische Verformung innerhalb der Klebschicht	65
6.25	Numerisches Modell der DCB-Probe	66
6.26	Numerische und experimentelle Last-Verformungs-Verläufe der DCB-Proben	
	$mit t_K = 1,0 \text{ mm} \dots \dots$	66
6.27	Auswertung der numerischen Ergebnisse des DCB-Modells nach Variante 2 -	
		67
6.28	Last-Verformungs Verläufe für Arcan-Proben mit $t_K = 0,75 \text{ mm} \dots 1$	68

6.29	Kraft-Verformungsverläufe für SLJ-Proben mit und ohne elastische Bettung, modelliert nach Variante 3	170
7.1	Idealisierte Klebschichtverformungen	175
A.1	Numerische Modelle der zylindrischen Rohrverbindung	189
A.2	Shell-Solid und Solid-Solid-Modell der zylindrischen Rohrverbindung	190
A.3	Normierte Spannungen im Klebeschichtzentrum für Arcan-Proben. (Links Zug-	
	belastung, Rechts Schubbelastung)	190
A.4	Geometrie SLJ	191
A.5	Geometrie der Arcan 1.0 Proben sowie Aushärtevorrichtung	191
A.6	Zeichnung und Aufbau des Arcan Versuchsaufbaus 1.0	192
A.7	Arcan Obere Vorrichtung	193
A.9	Arcan Aushärtungsvorrichtung	194
	Geometrie der Arcan-Probe	
	Arcan Untere Vorrichtung	
A.11	Abmessungen und Versagenslasten der SLJ	197
A.12	Bruchflächen der SLJ-Stahlproben mit einer Klebeschichtdicke von 0,6 mm	198
A.13	Bruchflächen der SLJ-Stahlproben mit einer Klebeschichtdicke von 0,9 mm	198
A.14	Klebeschichtdicken und ermittelte Energiefreisetzungsraten der DCB-Proben .	199
A.15	Klebeschichtdicken und Versagenslasten der 0° Arcan-Proben	200
A.16	Klebeschichtdicken und Versagenslasten der 45° Arcan-Proben	201
A.17	Klebeschichtdicken und Versagenslasten der 90° Arcan-Proben	202

Tabellenverzeichnis

1.1 1.2	Übersicht über experimentelle Methoden	6 15
2.1	Vergleich von Fügetechniken für den Karosseriebau [57]	24 39
3.1	Bettungsziffern	55
5.1	Vor- und Nachteile des Zugversuchs an Stumpfstoßverbindungen [114]	78
5.2	Vor- und Nachteile des Iosipescu Schubversuchs [114]	82
5.3	Verwendete Kerbradien und Kerbtiefen	
6.1	Materialkennwerte der Fügeteile	137
6.2	Probenvorbereitungsschritte für Stahl	137
6.3	Abmessungen und Versagenslasten der SLJ Stahlproben	141
6.4	Nomenklatur für DCB-Proben	144
6.5	Energiefreisetzungsraten aus DCB-Versuchen für unterschiedliche Probengeo-	
	metrien ausgewertet nach Norm (CBT)	146
6.6	Verformungsenergie in Klebschichten für reine Schubbelastung	154
6.7	Zusammenfassung der ermittelten Materialkennwerte	158
6.8	Übersicht über numerisch und experimentell ermittelte Versagenslasten für SLJ	163

Symbolverzeichnis

C Balkennachgiebigkeit

B, b Breite

KC BruchzähigkeitD DurchmesserE E-Modul

k Federsteifigkeit

A Fläche

I Flächenträgheitsmoment

h Fügeteildicke t Klebschichtdicke

F, P Kraft
L Länge
M Moment
N Normalkraft
r Radius

a Risslänge
T Spannung
S11, S22, S12 Spannungskomponenten

K Klebschichtsteifigkeit lü Überlappungslänge v, w Verformungen

W Verformungsenergie

Indizes

a	Äußeres
В	Bruch
F	Fügeteil
i	Inneres
K	Klebstoff
T	Total
у	Yield

Abkürzungsverzeichnis

CBT Corrected Beam Theory

CFK Kohelefaserverbundwerkstoff

CLS Cracked lap Shear

DCB Double Cantilever Beam

DLJ Double-Lap Joint
ELS End-Loaded Split
ENF End Notch Flexture

LEBM Linear Elastische Bruchmechanik
MCB Mixed-Mode Cantilever Beam

MMB Mixed-Mode Bending
MPC Multiple Point Constraint
PTFE Polytetrafluorethylen

SHM Structural Health Monitoring

SLJ Single- Lap Joint

VCCT Virtual Crack Closure Technic