Abnormitäten-Management zur Fehlerprävention bei automatisierten Systemen im Betrieb

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von Manuel Bordasch aus Friedrichshafen

Hauptberichter: Prof. Dr.-Ing. Dr. h. c. Peter Göhner

Mitberichter: Prof. Dr.-lng. Ulrich Epple
Mitberichter: Prof. Dr.-lng. Michael Weyrich

Tag der Einreichung: 21.01.2016 Tag der mündlichen Prüfung: 11.07.2016

Institut für Automatisierungs- und Softwaretechnik der Universität Stuttgart

IAS-Forschungsberichte

Band 1/2016

Manuel Bordasch

Abnormitäten-Management zur Fehlerprävention bei automatisierten Systemen im Betrieb

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2016

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4698-4 ISSN 1610-4781

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Automatisierungs- und Softwaretechnik (IAS) der Universität Stuttgart.

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. Dr. h. c. Peter Göhner für die zahlreichen konstruktiven Anregungen und fortwährende Unterstützung während der Entstehung der Arbeit sowie für die Übernahme des Hauptberichts.

Herrn Prof. Dr.-Ing. Ulrich Epple und Herrn Prof. Dr.-Ing. Michael Weyrich danke ich für das entgegengebrachte Interesse an meiner Arbeit und die Übernahme des Mitberichts.

Ein herzlicher Dank gilt Herrn Dr.-Ing. Nasser Jazdi für sein Engagement und die wertvollen Aussprachen zum Forschungsthema und zu Fragen des beruflichen Alltags. Allen ehemaligen Kolleginnen und Kollegen am IAS gilt mein herzlicher Dank für die gute Zusammenarbeit.

Ebenso gilt mein Dank den Studierenden, die im Rahmen ihrer Diplom-, Master-, Studien- und Bachelorarbeiten einen Beitrag zum Gelingen dieser Arbeit geleistet haben.

Schließlich möchte ich mich herzlich bei meinen Eltern bedanken sowie meinen Freunden für die Gespräche, für ihr Verständnis, ihre Geduld und ihren Zuspruch.

Stuttgart, im Juli 2016

Manuel Bordasch

Inhaltsverzeichnis

Ab	bildu	ngsverz	zeichnis	v
Ta	bellen	verzeic	hnis	vii
Be	griffs	verzeicl	hnis	viii
Ab	kürzı	ıngsver	zeichnis	x
Zu	samm	enfassı	ung	xi
Ab	stract	t 		xii
1	Einl	eitung ı	und Motivation	1
	1.1	_	tung der Fehlerprävention für automatisierte Systeme	
	1.2	Proble	ematik der Fehlerprävention bei automatisierten Systemen	3
	1.3	Zielse	tzung der Arbeit	5
	1.4	Gliede	erung der Arbeit	6
2	Gru	ndlager	n der Fehlerprävention	8
	2.1	Einfül	nrung in das Gebiet der Fehlerprävention	8
	2.2	Diskus	ssion und Abgrenzung grundlegender Begriffe	10
		2.2.1	Fehler	10
		2.2.2		
		2.2.3		
			Verfügbarkeit	
	2.3		prävention als Erweiterung des klassischen Fehlermanagements	
	2.4		Inung der Fehlerprävention in den Fehlermanagementprozess	
	2.5		prävention bei automatisierten Systemen	
		2.5.1	•	
		2.5.2		
		2.5.3	Arten der Fehlerprävention	23
3	Heu	tige Lös	sungen zur Fehlerprävention bei automatisierten Systemen	26
	3.1	Instan	dhaltung	27
	3.2	Fehler	prävention durch vorausschauende Wartung	29
		3.2.1		
		3.2.2		
		3.2.3	Zustandsbestimmung mit Hilfe von statischem Prozesswissen Zustandsbestimmung mit Hilfe von dynamischem Prozesswissen	
	3.3		den zur Zustandsbestimmung	
	3.3	3.3.1		
		3.3.2	e	
	3.4		rtung aktueller Methoden zur Fehlerprävention	

	3.5	Problei	ne bei den aktuellen Fehlerpräventionsansätzen	51
	3.6	Anford	erungen an ein innovatives Konzept	52
			Parallele Durchführung zum Betrieb des automatisierten Systems ohne	50
			Einfluss auf dessen Funktionalität	
			Automatisierte Überprüfung auf Fehlerentwicklungen	
			Kontinuierliche Erweiterung des präventionsrelevanten Wissens	
			Flexible Realisierung des Präventionskonzeptes	
4	Kon	zept für	eine innovative Fehlerprävention bei automatisierten Systemen im	
	Betr			56
	4.1		ende Trends für das Konzept zur Fehlerprävention bei automatisierten en im Betrieb	56
	4.2		für eine innovative Fehlerprävention bei automatisierten Systemen im	57
			Fehlerprävention durch fehlerbasiertes Abnormitäten-Management	
			Erweiterung des fehlerbasierten Präventionsansatzes	
	4.3	Grundl	egende Entscheidungen für das Abnormitäten-Management	60
	4.4		ielle Architektur des Abnormitäten-Managements in automatisierten	61
	4.5	Prozess	sinformationen des automatisierten Systems	64
	4.6	Prinzip	der E-Crash-Box.	65
		4.6.1	Aufzeichnungsbedarf gemäß den existierenden Signaltypen	65
			Funktionsweise der E-Crash-Box	
	4.7		iventionsrelevante Wissen	
	4.8		pasiertes Abnormitäten-Management	
			Konventionelle Fehlerdiagnose	
		4.8.2	Fehlerentwicklungsidentifikation	73
			Fehlerentwicklungsüberprüfung	
			ÜberprüfungszyklenAuswahl geeigneter Analysemethoden für die Identifikations- und	78
		4.8.5	Überprüfungsprozesse von AMIAS	70
		4.8.6	Ablauf der Identifikations- und Überprüfungsprozesse von AMIAS	81
	4.9		schauendes Abnormitäten-Management	
	4.10	Detailli	ierte Darstellung des Abnormitäten-Management-Konzepts	86
			Aufbau des Präventionswissens	
			Ablauf der Fehlerentwicklungsidentifikation	
			Ablauf der Fehlerentwicklungsüberprüfung	
		4.10.4	Ablauf der Abnormitätenüberprüfung	90
5			lisierung des Abnormitäten-Managements in automatisierten Systeme	n 92
	5.1		ielle Realisierungsmöglichkeiten der Bestandteile des Abnormitäten- ements	92
	5.2	Möglic	he Konstellationen des Abnormitäten-Managements	93
	5.3	Flexibi	lität durch konfigurierbare Bestandteile	97
	5.4	Flexibi	lität bezüglich des Präventionsumfangs	99

Syst	setzung und Evaluation des Abnormitäten-Managements für automatis teme	102
6.1		
	6.1.1 Umsetzung der Systembestandteile	
	6.1.2 Schnittstelle zwischen dem automatisierten System und dem Abno	
	Management-System	
	6.1.3 Schnittstelle zu den MySQL-Datenbanken	
	6.1.4 Aufbau und Ablauf der E-Crash-Box-Applikation	
	6.1.5 Aufbau und Ablauf der Fehlerentwicklungsidentifikations-Applika6.1.6 Aufbau und Ablauf der Fehlerentwicklungs- & Abnormitätenüberg	orüfungs-
	Applikation	
6.2	Evaluation anhand eines 2-Tank-Systems der Firma Festo	113
	6.2.1 2-Tank-System der Firma Festo	113
	6.2.2 Verbindung des Abnormitäten-Management Systems mit dem 2-Tank-System der Firma Festo	114
	6.2.3 Evaluationsmaßnahmen und Ergebnisse des Abnormitäten-Manago Systems mit dem 2-Tank-System	
6.3		
•••	6.3.1 IAS-Waschmaschinensimulator	
	6.3.2 Verbindung des Abnormitäten-Management-Systems mit dem IAS Waschmaschinensimulator	S-
	6.3.3 Evaluationsmaßnahmen und Ergebnisse des Abnormitäten-Manage Systems mit dem IAS-Waschmaschinensimulator	ement-
6.4	Bewertung des Abnormitäten-Management-Systems bezüglich der gestell Anforderungen	
Zusa	ammenfassung und Ausblick	123
7.1	Ergebnisse der Arbeit	
	Grenzen des Konzepts	125
7.2		

Abbildungsverzeichnis

Abbildung 2.1:	Vorteile durch den Einsatz einer Fehlerprävention	9
Abbildung 2.2:	Übergang vom regulären Betrieb zum fehlerhaften Zustand	9
Abbildung 2.3:	Zuordnung der Fehler in technischen Systemen	
Abbildung 2.4:	Fehler in unterschiedlichen Systembestandteilen	13
Abbildung 2.5:	Tätigkeitsfelder des Fehlermanagements	
Abbildung 2.6:	Ablauf des klassischen Fehlermanagementprozesses	17
Abbildung 2.7:	Zeitliche Abfolge der Tätigkeitsfelder des Fehlermanagements	18
Abbildung 2.8:	Zusammenwirken der Bestandteile eines automatisierten Systems	
Abbildung 3.1:	Ablauf der vorausschauenden Wartung	30
Abbildung 3.2:	Trendberechnung für einen zukünftigen Verlauf einer Prozessgröße	
Abbildung 3.3:	Übergang vom Soll-Verhalten zu einem abnormen Verhalten	40
Abbildung 3.4:	Funktionsprinzip der Analyse der Änderungsrate	41
Abbildung 3.5:	Approximation eines realen Signals anhand minimaler Fehlerquadrate	
Abbildung 3.6:	Modellierung von unscharfen Systemzuständen	45
Abbildung 3.7:	Modellierung von Zustandsübergängen mit Hilfe eines HMM	
Abbildung 3.8:	Verfahren zur Minimierung der Ausgangsfehler	48
Abbildung 3.9:	Verfahren zur Minimierung der Gleichungsfehler	
Abbildung 3.10:		
Abbildung 4.1:	Struktur des Abnormitäten-Managements in automatisierten Systemen	63
Abbildung 4.2:	Prinzipielle Funktionalität der E-Crash-Box	66
Abbildung 4.3:	Aufbau des Fehlerwissens	
Abbildung 4.4:	Aufbau des Soll-Prozesswissens	68
Abbildung 4.5:	Unterteilung des Überprüfungswissens	70
Abbildung 4.6:	Aufbau des Überprüfungswissens	70
Abbildung 4.7:	Funktionsweise der Fehlerentwicklungsidentifikation	
Abbildung 4.8:	Ablauf der Fehlerentwicklungsidentifikation	74
Abbildung 4.9:	Funktionsweise der Fehlerentwicklungsüberprüfung	76
	Ablauf der Fehlerentwicklungsüberprüfung	77
Abbildung 4.11:	Beispielhafte Bestimmung des globalen Überprüfungszyklus	78
Abbildung 4.12:	Ablauf des Identifikationsprozesses mit der Grenzwertanalyse	81
	Ablauf des Identifikationsprozesses mit der Analyse der Änderungsrate	
	Ablauf des Überprüfungsprozesses mit der Grenzwertanalyse	
Abbildung 4.15:	Ablauf des Überprüfungssprozesses mit der Analyse der Änderungsrate	84
	Funktionsweise der Abnormitätenüberprüfung	
	Detaillierter Aufbau des Soll-Prozesswissens	
Abbildung 4.18:	Detaillierter Aufbau des Überprüfungswissens	87
Abbildung 4.19:	Beispielhafter Ablauf der Fehlerentwicklungsidentifikation	88
	Beispielhafter Ablauf der Fehlerentwicklungsüberprüfung	
Abbildung 4.21:	Beispiel einer Überprüfungsanweisung für eine Abnormität	
Abbildung 5.1:	Auswahlverfahren für die flexible Realisierung von AMIAS	
Abbildung 5.2:	Beispielkonstellation von AMIAS im Falle eines Massenherstellers	
Abbildung 5.3:	Beispielkonstellation von AMIAS für den mobilen Fall	
Abbildung 5.4:	Flexibilität im Präventionsumfang für gleichartige automatisierte Systeme.	100
Abbildung 6.1:	Struktur des Abnormitäten-Management-Systems	103
Abbildung 6.2:	Übermittlung von Prozessinformationen an die E-Crash-Box	104
Abbildung 6.3:	Übermittlung von Prozessinformationen an die Fehlerentwicklungs- &	
	Abnormitätenüberprüfung	105
Abbildung 6.4:	Auslesen von Crash-Box-Daten aus der Crash-Box-Datenbank	105

Abbildung 6.5:	Auslesen von fehlerspezifischen Informationen aus der Fehlerwissen-	
	Datenbank	. 106
Abbildung 6.6:	Auslesen von Soll-Prozess Informationen aus der Soll-Prozesswissen-	
	Datenbank	. 106
Abbildung 6.7:	Einlesen von Überprüfungsanweisungen in die Überprüfungswissen-	
	Datenbank	. 107
Abbildung 6.8:	Auslesen der Überprüfungsanweisungen aus der Überprüfungswissen-	
	Datenbank	. 107
Abbildung 6.9:	Aktualisierung der Anzahl erkannter Fehlerentwicklungen in der	
	Überprüfungswissen-Datenbank	
Abbildung 6.10:	Architekturmodell der E-Crash-Box-Applikation	. 108
Abbildung 6.11:	Prozessschritte der E-Crash-Box-Applikation	. 108
Abbildung 6.12:	Architekturmodell der Fehlerentwicklungsidentifikations-Applikation	. 109
Abbildung 6.13:	Prozessschritte der Fehlerentwicklungsidentifikations-Applikation	. 110
Abbildung 6.14:	Architekturmodell der Fehlerentwicklungs- & Abnormitätenüberprüfungs-	•
	Applikation	. 111
Abbildung 6.15:	Prozessschritte der Fehlerentwicklungs- & Abnormitätenüberprüfungs-	
	Applikation	. 111
Abbildung 6.16:	Information über eine erkannte Abnormität	. 112
	Information über eine erkannte Fehlerentwicklung	
Abbildung 6.18:	Systemarchitektur des 2-Tank-Systems	. 113
Abbildung 6.19:	Gesamtaufbau mit dem 2-Tank-System der Firma Festo	. 114
Abbildung 6.20:	Systemarchitektur des IAS-Waschmaschinensimulators	. 117
Abbildung 6.21:	Gesamtaufbau mit dem IAS-Waschmaschinensimulator	. 118
2		

Tabellenverzeichnis

Tabelle 3.1: Unterschiedliche Signaltypen	38
Tabelle 4.1: Bewertung unterschiedlicher signalbasierter Analysemethoden	79
Tabelle 6.1: Mögliche Fehlerursachen beim 2-Tank-System	. 115
Tabelle 6.2: Ergebnisse der Evaluierung beim 2-Tank-System	
Tabelle 6.3: Mögliche Fehlerursachen beim 2-Tank-System	. 119
Tabelle 6.4: Ergebnisse der Evaluierung beim 2-Tank-System	. 120

Begriffsverzeichnis

Aktor: Eine Einheit zur Umsetzung der von einem

Automatisierungssystem ausgegebenen elektrischen oder optischen Stellsignale in physikalische oder chemische

Stellgrößen

Anlage: Eine planvolle Zusammenstellung von in räumlichem

Zusammenhang stehenden Maschinen oder Geräten

Assistenzsystem: Systeme, die den Nutzer in bestimmten Situationen oder bei

bestimmten Handlungen unterstützen

Ausfall: Das Versagen eines Systems oder eines seiner Teile

Automatisierungsgrad: Das Verhältnis zwischen der Anzahl der automatisierten

Fertigungsschritte zu der Gesamtzahl der gesamten

Fertigungsschritte

Cloud-Computing: Bereitstellung verteilter IT-Ressourcen, auf denen Software-

Applikationen ausgeführt werden können

Industrie 4.0: Die Verbindung der industriellen Produktion mit der

Informations- und Kommunikationstechnik

Infotainmentsystem: Die Zusammenführung von Information und Entertainment-

systemen im Kraftfahrzeug

Internet der Dinge: Die Vernetzung von Gegenständen über das Internet, mit dem

Ziel, dass diese Gegenstände miteinander kommunizieren und

so verschiedene Aufgaben selbstständig erledigen

Komponente: Eine vorgefertigte Einheit, die bewusst für die Mehrfach-

verwendung ausgelegt wurde und durch deren Konfiguration

vollständige Anwendungen entstehen

Mobile App: Eine Anwendungssoftware für Mobilgeräte bzw. mobile

Betriebssysteme

Plant Asset Management: Systematische und koordinative Aktivitäten bzw. Methoden,

mit der eine Organisation die Betriebsmittel seiner Produktionsprozesse und die damit verbundene Leistungsfähigkeit, Risiken und Ausgaben über den Lebenszyklus

optimal bewerkstelligen kann

Produkt: Ein Erzeugnis bzw. ein Ergebnis einer Produktion

Prototyp: Ein Versuchsmodell eines geplanten Produktes bzw.

technischen Systems

Prozess: Ein definierter Verlauf in einem technischen System

Sensor: Eine Einheit zur Umsetzung von physikalischen oder

chemischen Messwerten aus einem technischen Prozess in

elektrische oder optische Messsignale

Smartphone: Ein Mobiltelefon mit umfangreichen Computer-

Funktionalitäten und einer Vielzahl an technologischer

Konnektivität

Stillstandszeit: Die Dauer der Unterbrechung der Nutzung eines

Betriebsmittels

Tablet-PC: Ein tragbarer Computer, der über keine Hardware-Tastatur

verfügt, sondern über einen Touch-Screen, über den der

Computer gesteuert wird

Zuverlässigkeit: Eine Eigenschaft eines technischen Produkts oder Systems, die

angibt, wie verlässlich eine dem Produkt oder System

zugewiesene Funktion in einem Zeitintervall erfüllt wird

Abkürzungsverzeichnis

EMV Elektromagnetische Verträglichkeit

IP Internet Protocol

JDBC Java Database Connectivity

Kfz Kraftfahrzeug

OPC Open Platform Communications

PC Personal Computer

SQL Structured Query Language

TCP Transport Communication Protocol

UDP User Datagram Protocol

UML Unified Modelling Language

Zusammenfassung

Durch den stetig sich ausweitenden globalen Wettbewerb und die zunehmende Verbreitung automatisierter Systeme, sowohl im industriellen als auch im gewerblichen und privaten Umfeld, wird die Verfügbarkeit dieser Systeme immer wichtiger. Diese Trends stehen einer wachsenden Komplexität automatisierter Systeme und einem sich verstärkenden Fachkräftemangel gegenüber. Dies führt insbesondere im Rahmen der Instandhaltung zu Problemen, da diese Trends die durchzuführenden Instandhaltungsmaßnahmen erschweren. Somit wird es zunehmend wichtiger, Ausfallzeiten zu reduzieren und die fehlerfreien Betriebszeiten zu maximieren. Eine Möglichkeit stellt das Tätigkeitsfeld der Fehlerprävention dar, bei dem versucht wird, Fehlerentwicklungen frühzeitig zu erkennen und Gegenmaßnahmen einzuleiten, bevor ein Fehler auftritt. Ein besonderes Augenmerk liegt dabei auf der Effizienz der durchzuführenden Maßnahmen, da aufgrund des globalen Wettbewerbs, die Instandhaltungskosten einen immer größeren Stellenwert erhalten. Darüber hinaus bedarf es aufgrund des demographischen Wandels und des daraus resultierenden Fachkräftemangels einer Entlastung des Menschen.

In der vorliegenden Arbeit wird ausgehend von dieser Problemstellung ein Ansatz für eine vorwiegend automatisierte Fehlerprävention bei automatisierten Systemen vorgestellt. Im Vorfeld werden dafür bereits existierende Ansätze und Methoden betrachtet und gegenüber den heutigen und zukünftigen automatisierten Systemen bewertet. Auf Basis dessen wird ein Konzept erarbeitet, mit dem eine deutliche Effizienzsteigerung im Zuge einer Fehlerprävention erreicht wird. Das Konzept basiert dabei auf einem fehlerbasierten Präventionsansatz. Dabei werden im ersten Schritt Prozessinformationen während des Betriebs aufgezeichnet und im Falle eines Fehlers automatisiert auf Merkmale untersucht, die auf die spezifische Fehlerentwicklung hinweisen. Diese Merkmale werden im Anschluss genutzt, um das automatisierte System und gegebenenfalls gleichartige Systeme auf die Fehlerentwicklung zu überprüfen, um bei Bedarf geeignete Maßnahmen zur frühzeitigen Behebung dieser Fehlerentwicklung zu ergreifen. Der gewählte Ansatz wird überdies optional mit einem vorausschauenden Präventionsansatz kombiniert, bei welchem auf Abweichungen eines definierten Soll-Prozesswissens überprüft wird und bei Bedarf vor möglichen Fehlerentwicklungen gewarnt wird. Bei diesem Konzept wird des Weiteren darauf geachtet, dass es flexibel realisierbar ist und es sich somit ideal an die heutigen und zukünftigen Systemlandschaften anpassen lässt. Ferner wird ermöglicht, dass der Mensch bei den Präventionsmaßnahmen größtenteils entlastet wird und die automatisierten Systeme nur noch bei Bedarf gewartet werden müssen.

Abstract

Through the ever-increasing global competition and the growing use of industrial automation systems in both industrial as well as in commercial and home scope, the availability of these systems is becoming increasingly important. These trends are faced with a growing complexity of industrial automation systems and a growing lack of experts. This leads particularly in the context of maintenance to problems, since these trends complicate the performance of maintenance actions. Thus, it becomes increasingly important to reduce downtimes and maximize faultless operation times. One possibility is the field of application of fault prevention, in which it is tried to detect fault developments at an early stage and initiate remedial action before a fault occurs. A special attention is given to the efficiency of the performing actions, since the maintenance costs get growingly important through the global competition. In addition, a relief of the people is necessary due to demographic change and the resulting lack of experts.

In this thesis, an approach for a mainly automated fault prevention in industrial automation systems is presented, based on the mentioned problem statement. Previously, existing approaches and methods are considered and evaluated in relation to the current and future industrial automation systems. Based on this a concept is developed, with that a significant increase in efficiency in the course of a fault prevention is achieved. The concept is based on a fault-based prevention approach. Thereby in the first step, process information is recorded during operation and in case of fault analysed for features, which indicate the specific fault development. These features are used subsequently to check the industrial automation system and possibly systems of the same structure for past fault development in order to take appropriate actions for the early removal of this fault development, as necessary. The chosen approach is also combined with a forward-looking approach for fault prevention, in which it is checked for deviations of a defined target process knowledge and in which it is warned from possible fault developments, as needed. In addition, with this concept is minded, that it can be implemented flexibly and thus it can be ideally adapted to the current and future system landscapes. This concept enables that the person is relieved mainly in the prevention actions and that the industrial automation systems only need to be maintained, as required.