Hochfrequente Werkzeugschwingung zur Zugkraftreduktion bei der Bodenbearbeitung

Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

> zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

> > genehmigte

Dissertation

von: Ralf Kattenstroth

aus: Gütersloh

eingereicht am: 18.06.2015 mündliche Prüfung am: 18.12.2015

Gutachter: Prof. Dr.-Ing. Dr. h.c. Hans-Heinrich Harms

Prof. Dr.-Ing. Jörg Wallaschek

Vorsitzender: Prof. Dr. Ludger Frerichs

Forschungsberichte aus dem Institut für mobile Maschinen und Nutzfahrzeuge

Ralf Kattenstroth

Hochfrequente Werkzeugschwingung zur Zugkraftreduktion bei der Bodenbearbeitung

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2015

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4815-5 ISSN 2196-7369

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Landmaschinen und Fluidtechnik bzw. nach dessen Umbenennung am Institut für mobile Maschinen und Nutzfahrzeuge der Technischen Universität Braunschweig.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Dr. h.c. Hans-Heinrich Harms, der mir als Leiter des Institutes für Landmaschinen und Fluidtechnik die Bearbeitung eines von der Deutschen Forschungsgemeinschaft geförderten Projektes ermöglicht hat. Die dabei gewonnen Ergebnisse stellen die Basis der vorliegenden Arbeit dar. Bedanken möchte ich mich bei Herrn Prof. Harms außerdem für das mir entgegen gebrachte Vertrauen und die eingeräumten Freiräume bei der Arbeit am Institut und auch für die fachliche und persönliche Unterstützung nach seiner Zeit als Institutsleiter.

Bei Herrn Prof. Dr.-Ing. Jörg Wallaschek, Leiter des Institutes für Dynamik und Schwingungen an der Leibniz Universität Hannover, möchte ich mich zum einen für die Übernahme des Korreferates meiner Arbeit und zum anderen für die Unterstützung des Forschungsprojektes als Forschungspartner für die Ultraschalltechnik bedanken. Mein Dank gilt an dieser Stelle ebenfalls Herrn Dr. Ing. Jens Twiefel und Herrn Dr.-Ing. Wiebold Wurpts, für die angenehme und produktive Zusammenarbeit in dem Forschungsprojekt.

Für die Übernahme des Vorsitzes der Prüfungskommission und die interessante Zeit am Institut unter seiner Leitung möchte ich mich bei Herrn Prof. Ludger Frerichs bedanken. Die in dieser Zeit gewährten Möglichkeiten und Aufgaben haben zu meiner fachlichen und persönlichen Weiterentwicklung beigetragen.

Allen Mitarbeitern und ehemaligen Kollegen des Institutes möchte ich für die tolle Zusammenarbeit und die positive und freundschaftliche Arbeitsatmosphäre während meiner Institutszeit danken. Die persönlichen Kontakte und die ständige Bereitschaft zur gegenseitigen Unterstützung und zum Gedankenaustausch in fachlichen und persönlichen Dingen werden mir immer in positiver Erinnerung bleiben. Auch den Studierenden, die mich im Rahmen studentischer Arbeiten oder als studentische Hilfskräfte unterstützt haben, möchte ich an dieser Stelle danken.

Mein persönlicher Dank gilt meiner Frau Katrin Kuntzky und unseren beiden Kindern, die mich jederzeit unterstütz und ermutigt haben, aber bis zur Fertigstellung dieser Dissertation auch einige Geduld aufbringen mussten. Bei meinen Eltern Erika und Gerhard Kattenstroth möchte ich mich für die Unterstützung in allen Lebenslagen und die Begleitung auf dem Weg zu dieser Promotion ganz herzlich bedanken.

Inhaltsverzeichnis

1	Einl	leitung		1			
	1.1	Ausgangslage und Problemstellung					
	1.2	Zielse	tzung und Vorgehensweise	2			
2	Star	ıd der '	Fechnik und Forschung				
-	2.1		Geräte und Werkzeuge für die Bodenbearbeitung				
		2.1.1	Stand der Technik und aktuelle Entwicklungen bei Streichblechpflügen.				
		2.1.2	Stand der Technik und aktuelle Entwicklungen bei Grubbern				
	2.2	Ansätz	ze zur Zugkraftreduktion in der Bodenbearbeitung				
		2.2.1	Optimierung der Reibpaarung Werkzeugoberfläche-Boden				
		2.2.2	Einsatz schwingender Bodenbearbeitungswerkzeuge				
		2.2.3	Weitere Ansätze	30			
		2.2.4	Bewertung der Ansätze zur Zugkraftreduktion in der Bodenbearbeitung.	32			
3	The	oretiscl	ne Grundlagen	34			
	3.1	Theor	etische Grundlagen der Bodenbearbeitung	34			
		3.1.1	Bodeneigenschaften	34			
		3.1.2	Vorgang der Bodenbearbeitung	40			
	3.2	Theor	etische Grundlagen zur Reib- und Zugkraftreduktion	45			
	3.3	Grund	lagen zur hochfrequenten Schwingungsanregung	55			
4	Exp	Experimentelle Untersuchungen					
	4.1	Vorve	rsuche	61			
	4.2	Versu	chsaufbau	64			
		4.2.1	Bodenbearbeitungswerkzeug mit Schwingungssystem	64			
		4.2.2	Messwagen	67			
	4.3	Versu	chsdurchführung	69			
		4.3.1	Grundsätzlicher Versuchsablauf	69			
		4.3.2	Spezielles Vorgehen bei Versuchen auf der Freifläche	70			
		4.3.3	Spezielles Vorgehen bei Versuchen in der Bodenrinne	71			
	4.4	Versu	chsauswertung.	73			
		4.4.1	Auswertung der Zinkenkräfte	73			
		4.4.2	Auswertung der Arbeitsqualität	75			

5	Dar	stellung	g der Versuchsergebnisse	77
	5.1	Ergeb	nisse zur Zugkraftreduktion	77
		5.1.1	Einfluss der Arbeitsgeschwindigkeit	79
		5.1.2	Einfluss des Bodenwassergehaltes	84
		5.1.3	Einfluss der Arbeitstiefe	85
	5.2	Ergeb	nisse zur Arbeitsqualität	87
		5.2.1	Mauersand	87
		5.2.2	Mutterboden	89
		5.2.3	Kompost	90
	5.3	Zusan	nmenfassung und Bewertung der Ergebnisse	91
6	Hin	weise fi	ür die Praxis	94
	6.1	Mögli	che Einsatzgebiete und Grenzen der eingesetzten Technik	94
	6.2	Weite	rer Forschungsbedarf	95
7	Zus	ammen	fassung	98
8	Lite	raturvo	erzeichnis	100