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Abstract

This thesis presents a study of the kinematics, physical conditions and chem-
ical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-
Rayet (WR) and weak emission-line stars (wels), based on optical integral field
unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS)
on the Australian National University 2.3 telescope at Siding Spring Observa-
tory, and complemented by spectra from the literature. PNe surrounding WR-
type stars constitute a particular study class for this study. A considerable frac-
tion of currently well-identified central stars of PNe exhibit ‘hydrogen-deficient’
fast expanding atmospheres characterized by a large mass-loss rate. Most of
them were classified as the carbon-sequence and a few of them as the nitrogen-
sequence of the WR-type stars. What are less clear are the physical mechanisms
and evolutionary paths that remove the hydrogen-rich outer layer from these
degenerate cores, and transform it into a fast stellar wind. The aim of this thesis
is to determine kinematic structure, density distribution, thermal structure and
elemental abundances for a sample of PNe with different hydrogen-deficient
central stars, which might provide clues about the origin and formation of their
hydrogen-deficient stellar atmospheres.

Ho and [N 11] emission features have been used to determine kinematic
structures. Based on spatially resolved observations of these emission lines,
combined with archival Hubble Space Telescope imaging for compact PNe, mor-
phological structures of these PNe have been determined. Comparing the veloc-
ity maps from the IFU spectrograph with those provided by morpho-kinematic
models allowed disentangling of the different morphological components of
most PNe, apart from the compact objects. The results indicate that these PNe
have axisymmetric morphologies, either bipolar or elliptical. In many cases,

the associated kinematic maps for PNe around hot WR-type stars also show the

iii



presence of so-called fast low-ionization emission regions (FLIERs).

The WiFeS observations, complemented with archival spectra from the liter-
ature, have been used to carry out plasma diagnostics and abundance analysis
using both collisionally excited lines (CELs) and optical recombination lines
(ORLs). ORL abundances for carbon, nitrogen and oxygen have been derived
where adequate recombination lines were available. The weak physical depen-
dence of ORLs has also been used to determine the physical properties. It is
found that the ORL abundances are several times higher than the CEL abun-
dances, whereas the temperatures derived from the He 1 recombination lines
are typically lower than those measured from the collisionally excited nebular-
to-auroral forbidden line ratios. The abundance discrepancy factors (ADFs) for
doubly-ionized nitrogen and oxygen are within a range from 2 to 49, which are
closely correlated with the dichotomy between temperatures derived from for-
bidden lines and those from He 1 recombination lines. The results show that the
ADF and temperature dichotomy are correlated with the intrinsic nebular Hf3
surface brightness, suggesting that the abundance discrepancy problem must
be related to the nebular evolution.

Three-dimensional photoionization models of a carefully selected sample
of Galactic PNe have been constructed, constrained by the WiFeS observations
(Abell 48 and SuWt 2) and the double echelle MIKE spectroscopy from the lit-
erature (Hb 4 and PB 8). The WiFeS observations have been used to perform
the empirical analysis of Abell 48 and SuWt 2. The spatially resolved veloc-
ity distributions were used to determine the kinematic structures of Hb 4 and
Abell 48. The previously identified non-LTE model atmospheres of Abell 48 and
PB 8 have been used as ionizing fluxes in their photoionization models. It is
found that the enhancement of the [N 11] emission in the FLIERs of Hb 4 is
more attributed to the geometry and density distribution, while the ionization
correction factor method and electron temperature used for the empirical anal-

ysis are mostly responsible for apparent inhomogeneity of nitrogen abundance.
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However, the results indicate that the chemically inhomogeneous models, con-
taining a small fraction of metal-rich inclusions (around 5 percent), provide
acceptable matches to the observed ORLs in Hb 4 and PB 8. The observed
nebular spectrum of Abell 48 was best produced by using a nitrogen-sequence
non-LTE model atmosphere of a low-mass progenitor star rather than a massive
Pop I star. For Abell 48, the helium temperature predicted by the photoioniza-
tion model is higher than those empirically derived, suggesting the presence of
a fraction of cold metal-rich structures inside the nebula. It is found that a dual-
dust chemistry with different grain species and discrete grain sizes likely pro-
duces the nebular Spitzer mid-infrared continuum of PB 8. The photoionization
models of SUWt 2 suggest the presence of a hot hydrogen-deficient degenerate
core, compatible with what is known as a PG 1159-type star, while the nebula’s

age is consistent with a born-again scenario.
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