Eine kundennutzenfokussierte techno-ökonomische Analyse der dynamischen Wechselwirkungen zwischen Elektrofahrzeug, Photovoltaikanlage, Heimspeicherbatterie und Elektrizitätsnetz mit System Dynamics

Dissertation

zur
Erlangung des Grades
Doktor-Ingenieur

der
Fakultät für Maschinenbau
der Ruhr-Universität Bochum

von **Daniel Kurt Jandt**aus Ahlen (Westf.)

Bochum 2016

Dissertation eingereicht am: 14. November 2016 Tag der mündlichen Prüfung: 22. Dezember 2016

Erste Referentin: Prof. Dr.-Ing. K. Laurischkat Zweiter Referent: Prof. Dr.-Ing. H. Meier

Schriftenreihe der Juniorprofessur Product-Service Systems

Herausgeberin Prof. Dr.-Ing. Katja Laurischkat

Band 2/2017

Daniel Jandt

Eine kundennutzenfokussierte techno-ökonomische Analyse der dynamischen Wechselwirkungen zwischen Elektrofahrzeug, Photovoltaikanlage, Heimspeicherbatterie und Elektrizitätsnetz mit System Dynamics

> Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2016

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5088-2 ISSN 2511-5707

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Liste der Veröffentlichungen

- [1] Laurischkat, Katja; Jandt, Daniel (accepted extended abstract): Techno-economic analysis of sustainable mobility and energy solutions composed of electric vehicles, photovoltaic systems and battery storages. In: *Journal of Cleaner Production*.
- [2] Laurischkat, Katja; Jandt, Daniel; Viertelhausen, Arne (2016): Dienstleistungsorientierte Geschäftsmodelle für die Elektromobilität. In: Thomas, O.; Nüttgens, M.; Fellmann, M. (Hrsg.): Smart Service Engineering – Konzepte und Anwendungsszenarien für die digitale Transformation. Springer Gabler Verlag, S. 258–281. http://dx.doi.org/10.1007/978-3-658-16262-7 12
- [3] Laurischkat, Katja; Jandt, Daniel (2016): Business Model Prototyping for Electric Mobility and Solar Power Solutions. In: *Procedia CIRP* 48, S. 307–312. http://dx.doi.org/10.1016/j.procir.2016.03.026
- [4] Laurischkat, Katja; Viertelhausen, Arne; Jandt, Daniel (2016): Business Models for Electric Mobility. In: Procedia CIRP 47, S. 483–488. http://dx.doi.org/10.1016/j.procir.2016.03.042
- [5] Jandt, Daniel; Laurischkat, Katja (2016): Understanding the interplay between exploration and exploitation in the data-driven servitization of manufacturing firms. In: Proceedings of the 34th International Conference of the System Dynamics Society, Delft, NL.
- [6] Laurischkat, Katja; Viertelhausen, Arne; Jandt, Daniel (2015): Geschäftsmodelle für die Elektromobilität. Ein dienstleistungsorientierter Ansatz für die multifunktionale Nutzung von Elektrofahrzeugen. In: wt Werkstattstechnik online 105 (7/8), S. 549–554.

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter an

der Juniorprofessur Product-Service Systems der Ruhr-Universität Bochum.

Mein besonderer Dank gilt Frau Prof. Dr.-Ing. Katja Laurischkat für die wissenschaftliche

Förderung und die große Freiheit, die sie mir bei der Erstellung meiner Dissertation eingeräumt

hat. Ich danke ihr sehr für das mir entgegengebrachte Vertrauen.

Herrn Prof. Dr.-Ing Horst Meier, dem langjährigen Leiter des Lehrstuhls für Produktions-

systeme, danke ich für sein Interesse an dieser Arbeit und die freundliche Übernahme des

Koreferates.

Besonderer Dank gilt meinem Kollegen Herrn Dr.-Ing. Arne Viertelhausen für die freundschaft-

liche Zusammenarbeit. Zudem möchte ich mich bei Herrn Dr.-Ing. Mario Boßlau für die stets

hilfreichen Diskussionen im Bereich System Dynamics bedanken.

Mein Dank gilt zudem meinen studentischen Hilfskräften Marta Kaus und Joanna Sanders für

die geleistete Arbeit und ihre stetige Unterstützung.

Ich möchte mich ebenfalls bei meinen Kolleginnen und Kollegen am Lehrstuhl für Produktions-

systeme für das angenehme Arbeitsklima bedanken.

Mein größter Dank gilt meiner Familie und meinen Freunden für ihren sehr starken Rückhalt.

Ahlen, im Januar 2017

Daniel Jandt

Kurzzusammenfassung

Aufgrund der technologischen Synergien zwischen Elektrofahrzeugen, Photovoltaikanlagen, Heimspeicherbatterien und dem Elektrizitätsnetz verschmelzen die Automobil- und die Energieindustrie zunehmend miteinander. Für Unternehmen besteht zum einen bei der Entwicklung von Mobilitäts- und Energielösungen die Herausforderung, die eigene Wettbewerbsfähigkeit gegenüber komplexen Konkurrenzangeboten sicherzustellen. Zum anderen besteht beim Vertrieb derartiger Lösungen die Schwierigkeit, geeignete Zielkunden zu identifizieren und den realisierbaren Kundennutzen zu kommunizieren.

Um eine Transparenz der dynamischen Wechselwirkungen der Technologien und der hieraus resultierenden Potenziale zur Stiftung eines ökonomischen Kundennutzens zu schaffen, wurde eine techno-ökonomische Analyse auf Basis von System Dynamics durchgeführt. Das in dieser Arbeit entwickelte systemdynamische Modell umfasst kundenspezifische Mobilitätsprofile, Haushaltslastprofile und Photovoltaikeinspeiseprofile in viertelstündiger Auflösung. Zudem wurden geschwindigkeitsabhängige Verbräuche von Elektro- und Verbrennungsfahrzeugen sowie verschiedene Photovoltaikanlagenleistungen und Heimspeicherkapazitäten berücksichtigt. Die Modellvalidität wurde anhand vertrauensbildender Tests sichergestellt. Hierbei ist vor allem der Abgleich der Simulationsergebnisse mit Literaturwerten des Autarkiegrades und der Eigenverbrauchsquote zu nennen, welcher nur geringfügige Abweichungen gezeigt hat. Schließlich wurden zwei ökonomische Szenarien erstellt, um die Wirtschaftlichkeit der Lösungen für unterschiedliche Strom-, Kraftstoff-, Heimspeicher- und Fahrzeugkosten zu bewerten.

Auf Basis der Simulationsstudien konnten folgende Erkenntnisse gewonnen werden: Erstens werden Elektrofahrzeuge zunächst für jene Kunden wirtschaftlich attraktiv sein, die selten auf der Autobahn fahren und eine Photovoltaikanlage besitzen. Für Pendler, die ihr Fahrzeug nicht am Arbeitsplatz laden können, wird selbst bei steigenden Kraftstoffpreisen das Verbrennungsfahrzeug das wirtschaftlichere Fortbewegungsmittel bleiben. Dies liegt zum einen an dem Fahrstromverbrauch von Elektrofahrzeugen, der stark von der Geschwindigkeit abhängig ist, und zum anderen an dem photovoltaischen Fahrstromanteil. Somit ist die Langstreckentauglichkeit von Elektrofahrzeugen auch zukünftig aus rein ökonomischer Sicht und unabhängig von dem Ausbau der öffentlichen Ladeinfrastruktur kritisch zu bewerten. Zweitens wirken sich Elektrofahrzeuge maßgeblich auf die kostenoptimalen technischen Spezifikationen von Photovoltaikanlagen und Heimspeicherbatterien aus. Dies sollte bereits heute bei der Auslegung neuer Systeme berücksichtigt werden, auch wenn die Nutzung eines Elektrofahrzeugs erst in Zukunft erfolgt. Drittens können Elektrofahrzeuge zum einen die Einspeisespitzen von Photovoltaikanlagen deutlich reduzieren und zum anderen die Bezugsspitzen zur Ladung des Fahrzeugs in für den Netzbetreiber unkritische Zeiten verschieben. Diese positiven Effekte begründen sich darin, dass die Kapazität der Traktionsbatterie bereits heute deutlich größer ist, als sie zur Erfüllung der alltäglichen Mobilitätsbedürfnisse eines Großteils der Bevölkerung sein müsste. Durch eine Heimspeicherbatterie kann die Netzverträglichkeit zusätzlich gesteigert werden.

Die Arbeit grenzt sich vom bestehenden Schrifttum ab, indem sie konsequent eine Kundensicht einnimmt und die ökonomischen Potenziale der technologischen Synergien quantifiziert.

Schlagwörter: Elektromobilität, Erneuerbare Energien, Diffusion von Technologien

Abstract

The technological synergies between electric vehicles, photovoltaic systems, battery storages and the power grid are the cause for the merging of the automotive and the energy industry. On the one hand, the design of mobility and energy solutions poses a challenge to companies which want to ensure their competitiveness with regard to complex competing offers. On the other hand, those companies are faced with the challenge of identifying the target customers and communicating the realizable customer value.

In order to provide transparency of both the dynamic technology interactions and the resulting potential for creating economic customer value, a techno-economic analysis based on System Dynamics has been conducted. The simulation model developed in this thesis comprises customer specific mobility profiles, load profiles of households and photovoltaic generation profiles in quarter-hourly resolution. Moreover, speed-dependent vehicle consumption data, various photovoltaic system performances and battery storage capacities are regarded. The model validity is ensured by confidence-building tests. At this point it should be emphasized that the comparison of the simulation results with literature values for the degree of self-sufficiency and the own consumption rate has revealed only minor deviations. Also, two distinctive economic scenarios are created, enabling a profitability calculation of the technical solutions under consideration of varying electricity, fuel, battery storage and vehicle costs.

The conduct of the simulation studies results in three main conclusions. First, electric vehicles will initially be economically attractive for customers who rarely use highways and own a photovoltaic system. In contrast, commuters who are not able to charge their electric vehicle at work will be economically impelled to continue using internal combustion engine vehicles even if fuel costs increase. The reasons are the traction current consumption, which strongly depends on the speed, and the share of the photovoltaic traction current. Therefore, the long distance capability of electric vehicles has to be discussed critically in the future - not only because of the expansion of the public charging infrastructure, but also for economic reasons. Second, electric mobility has significant impacts on the cost-optimized technical specifications of photovoltaic systems and battery storages. This should already be taken into account today, even though an electric vehicle will only be purchased in the future. Third, electric vehicles are able to mitigate the peaks of grid feed-in, which are caused by solar power generation, and to shift the peaks of grid purchase to periods which are favoured by the grid operator. This possibility is based on the fact that the capacity of the traction battery is already much larger than it needs to be for fulfilling the everyday mobility needs of the major part of the population. Battery storages can strengthen those positive effects.

This thesis differs from the existing literature by taking a customer perspective on the afore-mentioned factors and by quantifying the economic potentials resulting from the technological synergies.

Key words: electric mobility, renewable energies, diffusion of technologies

Inhaltsverzeichnis

1.	Ei	nleitu	ıng	1
	1.1.	Aus	gangssituation	1
	1.2.	Pro	blemstellung	2
	1.3.	For	schungsziel	3
	1.4.	Auf	bau der Arbeit	4
2.	Те	chno	-ökonomische Grundlagen	6
	2.1.	Dif	fusion der Technologien im Massenmarkt	7
	2.1	.1.	Mobilitäts- und Energiebedürfnisse in Deutschland	7
	2.1	.2.	Adaptionsfaktoren nach ROGERS	8
	2.1	.3.	Zielkunden integrierter Mobilitäts- und Energielösungen	9
	2.2.	Elel	ktrofahrzeuge und Heimladestationen	11
	2.2	.1.	Techno-ökonomische Grundlagen	12
	2.2	.2.	Staatliche Förderung	16
	2.2	.3.	Technologische Trends	16
	2.2	.4.	Marktdiffusion	16
	2.3.	Pho	tovoltaikanlagen	17
	2.3	.1.	Techno-ökonomische Grundlagen	18
	2.3	.2.	Staatliche Förderung	19
	2.3	.3.	Technologische Trends	19
	2.3	.4.	Marktdiffusion	20
	2.4.	Hei	mspeicher	21
	2.4	.1.	Techno-ökonomische Grundlagen	22
	2.4	.2.	Staatliche Förderung	24
	2.4	.3.	Technologische Trends	25

	2.4	1.4.	Marktdiffusion	25
	2.5.	Net	zintegration	26
	2.5	5.1.	Der deutsche Energiemarkt	27
	2.5	5.2.	Terminmarkt und Spotmarkt	29
	2.5	5.3.	Regelleistungsmarkt	30
	2.5	5.4.	Integrationspotenziale im Stromsektor	31
	2.6.	Тес	hnologische Synergien	34
	2.7.	Ene	ergiemanagement	35
	2.7	7.1.	Energiemanagement des Elektrofahrzeugs	36
	2.7	7.2.	Energiemanagement der Photovoltaikanlage	37
	2.7	7.3.	Energiemanagement des Heimspeichers	37
	2.8.	Zw	ischenfazit	38
3.	G	eschä	ftsmodelle und System Dynamics	39
	3.1.	Ges	schäftsmodelle	40
	3.1	.1.	Geschäftsmodelle für Product-Service Systems	40
	3.1	.2.	Total Cost of Ownership	41
	3.1	.3.	Kapitalwertmethode	42
	3.1	.4.	Bestehende Geschäftsmodelle für Mobilität und Energie	46
	3.2.	Sys	tem Dynamics	47
	3.2	2.1.	Grundprinzip von System Dynamics	47
	3.2	2.2.	Anwendung und Stärken von System Dynamics	48
	3.2	2.3.	System Dynamics und Kybernetik	49
	3.2	2.4.	Elemente von System Dynamics-Modellen	50
	3.2	2.5.	Struktur und Verhalten	51
	3.2	2.6.	Beispiel eines System Dynamics-Modells	52

	3.2.7.	Erstellung von System Dynamics-Modellen
	3.2.8.	Validierungstests
	3.3. Zv	vischenfazit
4.	Anford	derungen an die techno-ökonomische Analyse59
	4.1. Te	chno-ökonomische Anforderungen
	4.2. Di	ffusionstheoretische Anforderungen
	4.3. Zv	vischenfazit Kapitel 460
5.	Stand	der Forschung und Konkretisierung der Zielstellung
	5.1. Üb	perblick bestehender Ansätze
	5.1.1.	Gesamtbetriebskostenrechnung von Elektrofahrzeugen nach Wu et al. 2015 62
	5.1.2.	Gesamtbetriebskostenrechnung von Elektrofahrzeugen nach Hagman et al. 2016 62
	5.1.3. Hoppm	Kapitalwertbestimmung von Photovoltaikanlagen und Heimspeichern nach ann et al 2014
	5.1.4. Cucchi	Kapitalwertbestimmung von Photovoltaikanlagen und Heimspeichern nach ella et al. 2016
	5.1.5. Truong	Rentabilitätsberechnung von Photovoltaikanlagen und Heimspeichern nach et al. 2016
	5.1.6.	Netzintegration von Elektrofahrzeugen nach Metz und Doetsch 201264
	5.1.7.	Netzintegration von Elektrofahrzeugen nach Schuller et al. 2015
	5.1.8.	Netzintegration von Heimspeichern nach VDE 2015
5.1.9. Mierau		Energiemanagement von Elektrofahrzeugen und Photovoltaikanlagen nach et al. 2014
	5.1.10. der Kar	Energiemanagement von Elektrofahrzeugen und Photovoltaikanlagen nach var mund van Sark 2015
	5.1.11. Gottwa	Preisbasiertes Energiemanagement von Elektrofahrzeugen nach Flath und alt 2016
	5.1.12.	Geschäftsmodelle zur Netzintegration von Elektrofahrzeugen nach IWES 201466

	5.1	.13.	Geschäftsmodelle für Photovoltaikanlagen nach Strupeit und Palm 2016	66
	5.2.	Bev	wertung bestehender Ansätze	67
	5.3.	Sch	llussfolgerung und Konkretisierung der Zielstellung	70
6.	M	odell	ierung des techno-ökonomischen Systems	71
	6.1.	Bet	rachtungsraum von Mobilitäts- und Energielösungen	72
	6.2.	Übe	ersicht der generischen Systemstruktur	73
	6.3.	Sys	temelemente	76
	6.3	.1.	Traktionsbatterie	76
	6.3	.2.	Antriebsstrang	76
	6.3	.3.	Photovoltaikanlage	77
	6.3	.4.	Heimspeicher	77
	6.3	.5.	Elektrizitätsnetz	77
	6.3	.6.	Haushaltsverbraucher	77
	6.3	.7.	Verbrennungsfahrzeug	77
	6.4.	Ene	ergieflüsse	78
	6.4	.1.	Bilanzierung der Energieflüsse	78
	6.4	.2.	Energiemanagement	79
	6.5.	Inv	ariante Eingangsgrößen	80
	6.6.	Тес	chnische Kennwerte	81
	6.6	.1.	Eigenverbrauchsquote und Autarkiegrad	81
	6.6	.2.	Photovoltaischer Fahrstrom	81
	6.6	.3.	Zyklische Lebensdauer des Heimspeichers	82
	6.6	.4.	Einspeise- und Bezugsspitzen	83
	6.6	.5.	Potenzial zur Bereitstellung negativer Regelleistung	85
	6.7.	Öko	onomisches System	87

	6.7.1.	Total Cost of Ownership für Mobilität und Energie	87
	6.7.2.	Ökonomische Parameter	88
	6.7.3.	Wirtschaftlichkeitsbetrachtung der Lösungstypen	89
	6.7.4.	Zielkosten des Heimspeichers	90
	6.8. Bes	stands-Flussgrößen-Darstellung zentraler Modellbestandteile	91
	6.9. Zw	ischenfazit	93
7.	Simulat	tion des techno-ökonomischen Systems	94
	7.1. Par	ametrisierung des Simulationsmodells	95
	7.1.1.	Das Fahrprofil	95
	7.1.2.	Das Haushaltslastprofil	96
	7.1.3.	Das Photovoltaikprofil	97
	7.1.4.	Elektrofahrzeug, Heimladestation und Verbrennungsfahrzeug	98
	7.1.5.	Photovoltaikanlage und Heimspeicher	99
	7.1.6.	Festlegung des Energiemanagements	100
	7.1.7.	Zusammenfassung des Betrachtungsraums der Simulation	102
	7.1.8.	Szenarien der ökonomischen Kenngrößen	104
	7.2. Bet	rachtung der technischen Kennwerte	106
	7.2.1.	Durchschnittlicher Verbrauch der Fahrzeuge	106
	7.2.2.	Eigenverbrauchsquote und Autarkiegrad	107
	7.2.3.	Photovoltaischer Fahrstrom	109
	7.2.4.	Einspeisespitzen	110
	7.2.5.	Bezugsspitzen	111
	7.2.6.	Potenzial zur Bereitstellung negativer Regelleistung	112
	7.2.7.	Zyklische Lebensdauer des Heimspeichers	113
	7.3. Bet	rachtung der ökonomischen Kennwerte	114

7.3.1.	Energiekosten je 100 km nach Fahrprofilen	114
7.3.2.	Zielkosten für den Heimspeicher	115
7.3.3.	Vergleich unterschiedlicher Lösungen für Mobilität und Energie	116
7.3.4.	Exemplarische Detailbetrachtung für ein Kundensegment	119
7.4. Be	wertung der Modellgüte	121
7.4.1.	Test der dimensionalen Konsistenz	121
7.4.2.	Modellgrenzentest	122
7.4.3.	Parametertest	123
7.4.4.	Sensitivitätstest, Generalisierungstest und Extrembedingungstest	123
7.4.5.	Verhaltensvorhersagetest	124
7.4.6.	Verhaltensreproduktionstest	125
7.4.7.	Wirkungstest	125
7.5. Zw	vischenfazit	126
8. Zusam	menfassung und Ausblick	127
8.1. Zus	sammenfassung	127
8.1.1.	Betrachtungsraum der techno-ökonomischen Analyse	127
8.1.2.	Ergebnisse der Simulationsstudien	127
8.1.3.	Evaluation unter diffusionstheoretischen Gesichtspunkten	128
8.2. Au	sblick	129
8.2.1.	Dynamische Preissetzung zur Erhöhung der Netzdienlichkeit	129
8.2.2.	Auswirkung der technologischen Synergien auf die Marktdiffusion	129
8.2.3.	Bewertung von Lösungen mit Plug-in Hybridfahrzeugen	129
8.2.4.	Nutzen einer Parametrisierung mit historischen Kundendaten	130
8.2.5.	Entwicklung einer Benutzeroberfläche für eine Onlineanwendung	130
8.2.6.	Vergleichsportal für Mobilitäts- und Energielösungen	130

Verwendete A	Abkürzungen	131	
Abbildungsvo	erzeichnis	132	
Tabellenverz	eichnis	135	
9. Anhang	3	138	
9.1. Grö	ßen des Simulationsmodells	138	
9.2. Par	ametrisierung des Simulationsmodells	140	
9.2.1.	Die Fahrprofile	140	
9.2.2.	Standardlastprofil für Haushalte	142	
9.2.3.	Standardlastprofil für Photovoltaik	146	
9.2.4.	Energiemanagement	150	
9.3. Erg	gebnisse der Simulationsläufe	152	
9.3.1.	Abgleich der Simulationsergebnisse mit Literaturdaten	152	
9.3.2.	Rohdaten der Simulationsläufe	152	
Literaturverz	iteraturverzeichnis		
Lebenslauf		187	