Automatische Mehrzielverfolgung als Grundlage für Kontaktfusion und Parameterschätzung in einem Aktivsonarsystem

Dissertation

zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) der Technischen Fakultät der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Kolja Pikora

Kiel 2017

Berichterstatter:
Berichterstatter:

Prof. Dr.-Ing. Gerhard Schmidt Priv.-Doz. Dr. Wolfgang Koch

Datum der mündlichen Prüfung: 06.04.2017

Arbeiten über digitale Signalverarbeitung und Systemtheorie

Band 3

Kolja Pikora

Automatische Mehrzielverfolgung als Grundlage für Kontaktfusion und Parameterschätzung in einem Aktivsonarsystem

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kiel, Univ., Diss., 2017

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5239-8 ISSN 2197-7089

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzzusammenfassung

Die Detektion, Verfolgung und Klassifikation von Objekten unter Wasser ist die zentrale Aufgabe von Aktivsonarsystemen. Ein Aktivsonarsystem besteht aus einem Sender, der aktiv Schall in das Wasser eingibt und einem Empfänger, der mittels eines geschleppten Hydrofonarrays (Schleppsonar) Reflexionen des Schalls aus der Umgebung aufnimmt. In einer herkömmlichen Signalverarbeitungskette werden diese Reflexionen mittels Algorithmen zur Signalaufbereitung und Richtungsfindung in Sonarkontakte umgewandelt. Anschließend werden mittels einer automatischen Mehrzielverfolgung aus diesen Kontakten mögliche Verläufe von Zieltracks extrahiert. Die Mehrzielverfolgung ist im Rahmen dieser Arbeit als kardinalisierter PHD-Filter umgesetzt. Grundlegend für eine korrekte Kontaktgenerierung ist die genaue Kenntnis von Systemparametern, die in einer Parameterschätzung parallel zur Kontaktgenerierung ermittelt werden können. Wenn verschiedene Signale ausgesendet werden, dann wird für jedes Signal eine separate Signalverarbeitungskette prozessiert und jeweils eine Menge an Kontakten generiert. Eine Kombination dieser Kontaktmengen innerhalb der Mehrzielverfolgung oder im Rahmen einer expliziten Kontaktfusion führt zu einem Fusionsgewinn in Form einer höheren Lokalisierungsgenauigkeit von Zieltracks.

Eine zentrale Problemstellung im Aktivsonar liegt darin, dass Sonarkontakte mit einer gewissen Unsicherheit generiert werden und sich diese proportional auf die Position von Zieltracks auswirkt. Die Detektionsgenauigkeit und Detektionswahrscheinlichkeit von Sonarkontakten kann durch Kohärenzverluste der Signalformen oder durch Manöver des schleppenden Schiffes (und damit des Schleppsonars) verringert werden. Inhalt dieser Arbeit ist die Untersuchung von Möglichkeiten, eine Verbesserung der Ziellokalisierung durch eine Rückführung von Zieltrack-Informationen aus der Zielverfolgung in die Kontaktgenerierung zu erwirken. Kontaktfusion und Parameterschätzung in der Kontaktgenerierung sind Möglichkeiten für einen Informationsgewinn durch das Prinzip der Rückführung.

Im Rahmen dieser Arbeit wird eine sog. Semikohärente Kontaktfusion entwickelt, welche Kohärenzverlusten in Signalformen entgegenwirkt. Diese Kontaktfusion beinhaltet die Assoziation von Kontakten aus Kontaktmengen zweier hyperbolisch frequenzmodulierter Signale unter Zuhilfenahme von Zieltrack-Positionen aus der Mehrzielverfolgung. Es lässt sich zeigen, dass ein Fusionsgewinn durch diesen Ansatz erreicht werden kann, während Mehrzielsituationen den Fusionsgewinn jedoch einschränken. In einer Schätzung der Hydrofonpositionen wird die Idee der Semikohärenten Kontaktfusion bei Berechnungen von Mehrziel-Likelihoods genutzt. Für die Schätzung der Hydrofonpositionen werden innerhalb dieser Arbeit Zieltrack-Positionen aus der Mehrzielverfolgung als Unterstützung verwendet und ein Verfahren zur Selbstverfolgung des Hydrofonarrays entwickelt. Der Fokus der Selbstverfolgung liegt auf dem Moment einer Kursänderung möglich ist und hierzu keine Sensordaten des Hydrofonarrays oder *A-Priori*-Wissen über Objekte in der Umgebung vorhanden sein müssen.

Die Diskussion der Algorithmen basiert auf Monte-Carlo-Simulationen, in denen Track-Metriken gewonnen werden, welche die Qualität der entstehenden Tracks am Ausgang der Mehrzielverfolgung beschreiben. Die Ergebnisse der Semikohärenten Kontaktfusion werden mit denen einer Datenfusion im PHD-Filter mittels iterativer Nachführung verglichen. Der Selbstverfolgung werden Ergebnisse der Zielverfolgung gegenübergestellt, die mit verschieden ausgeprägter Kenntnis über Parameter des Manövers ermittelt wurden. Die Ergebnisse zeigen, dass eine Rückführung von Informationen aus der Zielverfolgung in die Kontaktfusion und Parameterschätzung geeignet ist, die Leistungsfähigkeit eines Aktivsonarsystems zu erhöhen.

Abstract

An active sonar system is used for the detection, classification and tracking of underwater objects. It consists of a transmitter which sends out acoustic energy into the water and a receiver (towing ship) which makes use of a towed hydrophone array (towed array) for detecting acoustical reflections in the environment. Within a common used signal processing chain the reflections are processed by signal enhancement and beamforming algorithms to create sonar contacts each representing one reflection. Based on these generated contacts, tracks of possible target trajectories are estimated in a subsequent automatic multitarget tracking which is within this work realized by a cardinalized PHD-filter. In parallel to the contact generation parameter estimation techniques could be used for approximating system parameters whose knowledge is essential for a correct contact generation. If several waveforms are used for transmission each of these waveforms is processed in an individual signal processing chain. The resulting contacts can be fused in an explicit contact fusion procedure or within the multitarget tracking to achieve an increasing localization accuracy of the targets.

A central problem in target tracking is demonstrated by the fact, that the uncertainty in the generation of sonar contacts affects the position of target tracks proportionally. The accuracy and probability of detection of sonar contacts can be mitigated by a loss of coherence in the transmitted signal waveforms and by a maneuver of the towing ship (and thus of the towed array). The purpose of this work is the study of a feedback of tracking information back to the contact generation for an improvement of the target localization. The contact fusion and the parameter estimation within the contact generation are possibilities to use the information provided by the feedback.

Within the context of this work, a so called semicoherent contact fusion is developed which counteracts the loss of coherence in the signal forms. This fusion technique contains an association of contacts generated from hyberbolic frequency modulated waveforms by using target state information from the target tracking as additional input. It is shown, that the semicoherent contact fusion leads to increasing tracking performance while suffering from multitarget situations. Within a parameter estimation for approximating the hydrophone positions the semicoherent contact fusion is used for calculating multitarget likelihoods. Within this work, the estimation of hydrophone positions is realized in a selftracking routine which also uses target state information from the target tracking. The focus of the estimation of hydrophone positions is on the moment of a towing ship maneuver. It turns out, that a self-tracking during a maneuver is possible and neither knowledge of non acoustical sensor data of the hydrophone array nor prior knowledge about sources of opportunity in the environment are necessary. The discussion of the new developed algorithms is based on Monte-Carlo simulations generating track metrics which describe the quality of the tracks at the output of the multitarget tracker. The results of the semicoherent contact fusion are compared with the iterative update procedure within the cardinalized PHD-filter. The results of the self-tracking procedure is compared with tracking results based on different knowledge about the maneuver of the array. As shown in the results, the feedback of information from the multitarget tracker back to the contact fusion and parameter estimation is a capable approach for increasing the performance of an active sonar system.

Inhaltsverzeichnis

Al	okürz	ungen und Notation	ix
1	Einle 1.1 1.2 1.3 1.4	eitung Motivation und Zielsetzung	1 2 5 5 6
2	Auft 2.1 2.2	Data und Signalverarbeitung eines Aktivsonarsystems Sonargleichung	7 8 9 9 11 13
	2.3 2.4	2.2.4 Semikohärente Signalverarbeitungskette 2.2.5 Komponenten der Sonarkontakte Hyperbolisch Frequenzmodulierte Signale und Doppler-Invarianz Zusammenfassung von Kapitel 2	20 22 23 25
3	Verf 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	ahren für die MehrzielverfolgungSequenzielle Mehrzielverfolgung3.1.1Random Finite Sets3.1.2RFS-Formulierung von Mehrzielzustand und Mehrzielmessung3.1.3Sequenzielle Mehrziel-Bayes-RekursionPHD-FilterCPHD-FilterFormulierung in Gauß-MixturenImplementierungsaspekteDatenfusion im CPHD-FilterBeschreibung der Zieldynamik3.7.1Messgleichung3.7.2Systemdynamik im Kalman-FilterZusammenfassung von Kapitel 3	27 29 29 30 31 32 33 36 37 38 39 40 41
4	Umg 4.1 4.2 4.3 4.4	gebung für die Simulation von Hydrofonsignalen Komponenten des Hydrofonsignal-Simulators Simulierte Szenarien als Datenbasis 4.2.1 Benchmark-Szenarios B1 und B2 4.2.2 Mehrziel-Szenario M1 4.2.3 Kontaktbasierte Szenarien Kriterien zur Bewertung von Zielverfolgungsverfahren Zusammenfassung von Kapitel 4	43 44 46 46 47 49 52 54

5	Sem	ikohärente Kontaktfusion von HFM-Kontakten	55
	5.1	Kohärenzverlust in HFM-Signalformen	56
	5.2	Semikohärente Kontaktfusion	56
	5.3	Anwendung auf Szenarien	60
		5.3.1 Bistatischer und multistatischer Einsatz	60
		5.3.2 Einfluss von erhöhtem Kontaktrauschen	62
		5.3.3 Korrekte Assoziationen in der Lagrange-Relaxierung	63
	5.4	Zusammenfassung von Kapitel 5	64
6	Auto	omatische Zielverfolgung als Grundlage von Parameterschätzung	77
	6.1	Parameterschätzung durch Selbstverfolgung des Hydrofonarrays	80
		6.1.1 Manöver-Analyse	82
		6.1.2 Track-Analyse	82
		6.1.3 Modelherung des Referenzhydrofonzustands	82
		6.1.4 Bewegung der Schleppantenne	84
		6.1.5 Selbstverfolgung mittels Gauß-Summen-Filter	85
		6.1.6 Entwicklung der Jacobi-Matrix	94
		6.1.7 Trackauswahl	94
		6.1.8 Trackidentifikation	95
		6.1.9 Initialisierung der Schleppantenne	96
		6.1.10 Neumitialisierung der Schleppantenne	96
		6.1.11 Diskussion von ausgewahlten Parametern	- 97
	6.2	Anwendung der Selbstverfolgung in Szenarien	98
		6.2.1 Sensitivitatsanalyse mit <i>a priori</i> bekannten Zielen	98
		6.2.2 Sensitivitatsanalyse mit Zielklassifikation	104
		6.2.3 Streuung der Postion des Referenzhydrofons	106
		6.2.4 Zielverfolgungsergebnisse	108
		6.2.5 Zielverfolgung mit verschiedener Klassifikation von Tracks	116
	6.3	Zusammenfassung von Kapitel 6	124
7	Zusa	ammenfassung und Ausblick	127
	7.1	Zusammenfassung der Ergebnisse und Algorithmen	127
	7.2	Ausblick auf weiterführende Arbeiten	129
Ar	hang	5	131
Α	Bere	echnung der Jacobi-Matrix in der Selbstverfolgung	133
Р	Daw	amotricionum das Sanavias	127
Б	Para	ametrisierung der Szenarios	137
С	Mul	tistatische Ergebnisse der Semikohärenten Kontaktfusion	139
Lit	erati	urverzeichnis	145
Ab	bildu	Ingsverzeichnis	153
Та	belle	nverzeichnis	155

Abkürzungen

AC	Arman Claim
AG	Array Gain
CPHD	Cardinalized probability hypothesis density
CI	Coordinated turn
CW	Continuous wave
CWNA	Continuous white hoise acceleration
DUT	Detection, classification and tracking
EM	Expectation maximization
FIR	Finite impulse response
FISST	Finite set statistics
FKIE	Fraunhofer Institut für Kommunikation, Information und Ergonomie
FM	Frequenzmoduliert
FS	Filter-and-sum
FTR	Falschtrackrate
GM	Gauß-Mixtur
GMPHD	Gaussian mixture probability hypothesis density
GMCPHD	Gaussian mixture cardinalized probability hypothesis density
GS	Gauß-Summe
HFM	Hyperbolisch frequenzmoduliert
HSS	Hydrofonsignal-Simulation
INA	Iterative Nachführung
ISIF	International Society of Information Fusion
JPDA	Joint probability density association
LAT	Latenz
LFTAS	Low Frequency Towed Array Sonar
MC	Monte-Carlo
MDA	Multidimensional assignment
ML	Maneuvering loss
MLE	Maximum Likelihood estimator
MLFT	Mittlere Länge von Falschtracks
MSTWG	Multistatic Tracking Working Group
NCV	Nearly constant velocity
PCA	Percent correct association
PHD	Probability hypothesis density
PPP	Poisson Punkt Prozesse
RFS	Random finite set
RMSE	Root mean squared error
SKF	Semikohärente Kontaktfusion
Sonar	Sound navigation and ranging
SNR	Signal to noise ratio
TDOA	Time difference of arrival
TKO	Track-Kontinuität

TLE	Track localization error
TVE	Track velocity error
TMA	Track- und Manöveranalyse
TPD	Track probability of detection
TPL	Track performance loss
TOS	Turn of ship
WDF	Wahrscheinlichkeits dichte funktion
WP	Water-Pulley

Notation

Konventionen und Operatoren

Platzhalter für den Ausdruck "nicht"
Approximierte Anzahl
Konjugiert-komplexer Vektor a
Transponierte einer Matrix \mathbf{A}
Geschwindigkeitskomponente
Übergangsfunktion von einem Zeitschritt in den nächsten
Stichprobe aus allen endlichen Untermengen des Raumes \mathcal{X}
Fouriertransformation
Inverse Fouriertransformation
Binominialkoeffizient mit Parametern a und b
Erwartungswertoperator
Zeit-diskretes Signal
Zeit-kontinuierliches Signal
Komplexwertiges Signal
Reellwertiger Signalvektor
Komplexwertiger Signalvektor
Diskrete Wahrscheinlichkeitsfunktion
Wahrscheinlichkeitsdichtefunktion
Normalverteilung des Vektors ${\bf x}$ mit Mittelwert $\overline{{\bf x}}$ und Kovarianz ${\bf P}$
Nullmatrix
Nicht assoziierter Track
Skalarprodukt zwischen zwei Sequenzen
Euklidische Norm

Formelzeichen

a	Beschleunigungskomponente
A	Menge von Assoziationen

b	Bandbreite
В	RFS neu entstehender Ziele
с	Schallgeschwindigkeit
С	Komponente einer Gauß-Mixtur
d	Komplexwertige Richtcharakteristik
\overline{D}	Richtdiagramm
Е	RFS von Clutterkontakten
E	Einhüllende eines Signals
f	Frequenz
f_0	Mittenfrequenz
f_m	Momentanfrequenz
F	Übergangsmatrix
a	Messungs-Einzelziel-Likelihood
G	Gauß-Summe
He b	Hydrofon in Kette ℓ und Position h
$h(\cdot)$	Messfunktion
h	Laufindex für Hydrofone
i	Allgemeiner Laufindex
i	Laufindex für Komponenten einer Gauß-Summe
J	Austauschmatrix
k	Zeit-diskreter Zeitindex
Κ	Kalman-Verstärkung
$l_{\rm C}$	Länge des Schleppkabels
\tilde{N}_{M}	Dauer eines Manövers relativ zur Pingperiode
$l_{\rm K}$	Länge einer Hydrofonkette
m	Mittelwert
n	Index einer Folge oder Sequenz
N_{\varnothing}	Anzahl von Tracks ohne assoziiertem Kontakt
$N_{\rm a}$	Anzahl von Assoziationen
$N_{\rm d}$	Anzahl von Tracks mit assoziiertem Kontakt
N_u	Anzahl überlebender Gauß-Komponenten
N_i	Anzahl von Gauß-Komponenten
N_{Γ}	Anzahl neu entstehender Gauß-Komponenten
N_T	Anzahl von Tracks
$N_{\rm r}$	Anzahl von Reflektionen
$N_{\rm h}$	Anzahl von Hydrofonen
$N_{\rm e}$	Anzahl von Empfänger
$N_{\rm t}$	Anzahl Zeitschritte
$N_{\rm MC}$	Anzahl Monte-Carlo-Simulationen
N_q	Anzahl von Zielen
N_O	Anzahl identifizierter Tracks
N_z	Anzahl von Kontakten
$N_{\rm u}$	Anzahl Abtastwerte eines Signalvektors
0	Laufindex von extrahierten Trackzuständen
p_f	Falschalarmwahrscheinlichekeit
p_d	Detektionswahrscheinlichkeit
p_u	Überlebenswahrscheinlichkeit
P	Eckpunkt eines Dreiecks

р	Positionsvektor
P	Kovarianzmatrix
Q	Prozessrauschkovarianzmatrix
r	Entfernung
R	Kovarianzmatrix des Messrauschens
S_X	Region in einem Raum \mathcal{X}
S	Innovationsmatrix des Kalman-Filters
$T_{\rm M}$	Dauer eines Manövers in Sekunden
$T_{\rm p}$	Zeit zwischen zwei ausgesendeten Pings
t	Zeit-kontinuierlicher Zeitindex
$N\left(\cdot\right)$	Detektorausgang
Т	Triple aus HFM ⁺ -, HFM ⁻ -Kontakt und Track
U	RFS der überlebenden Ziele
V	Geschwindigkeitskomponente
$v_{\rm D}$	Geschwindigkeitsverlust
v	Geschwindigkeitsvektor
x	Kartesische Zustandskomponente
x	Zustandsvektor
Х	RFS des Mehrzielzustands
$\mathbf{X}_{\mathcal{T}}$	RFS extrahierter Ziele
y .	Kartesische Zustandskomponente
z	Kontaktvektor
Z	RFS der Kontakte
	Dämmfung einer Deflerien
α_R	Dämpfung einer Reflexion
α_R α_w	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschnitt
$\begin{array}{c} \alpha_R \\ \alpha_w \\ \beta \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abszeltunde Zustände in einem Zeitschritt
$ \begin{array}{c} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma \end{array} $	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwalle im Narman Beargen Detektor
$ \begin{array}{c} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \Gamma \end{array} $	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor
$\begin{array}{c} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\mathrm{NP}} \\ \Gamma \\ \varsigma \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Dicteore
$\begin{array}{c} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \Gamma \\ \delta \\ \Lambda \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz
$ \begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \Gamma \\ \delta \\ \Delta_{\rm TPL} \\ \Delta_{\rm Y} \\ \end{array} $	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \Gamma \\ \delta \\ \Delta_{\rm TPL} \\ \Delta\psi \\ \Delta_w \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \Gamma \\ \delta \\ \Delta_{\rm TPL} \\ \Delta\psi \\ \Delta \mathbf{v} \\ \zeta \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Paforanghudwafon
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NP} \\ \boldsymbol{\Gamma} \\ \boldsymbol{\delta} \\ \Delta_{\rm TPL} \\ \Delta\psi \\ \Delta \mathbf{v} \\ \boldsymbol{\zeta} \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Erzeuwang Felter im HEM Signal
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{\rm NPP} \\ \Gamma \\ \delta \\ \Delta_{\rm TPL} \\ \Delta \psi \\ \Delta v \\ \zeta \\ \eta \\ \rho \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta \psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta \\ \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Stausun somialed
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_b \\ \Theta_s \\ \Theta \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel
$\begin{array}{l} \alpha_R \\ \alpha_w \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_b \\ \Theta_s \\ \Theta \\ \Theta \\ \phi \\ (r) \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{s} \\ \Theta \\ \kappa (z) \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta_{V} \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Pauscelkompenante
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{b} \\ \Theta_{s} \\ \Theta \\ \kappa \\ (z) \\ \mu \\ w \\ \epsilon \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Rauschkomponente
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{b} \\ \Theta_{s} \\ \Theta \\ \kappa \\ (z) \\ \mu \\ W \\ \xi \\ a.b \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Rauschkomponente Zustand im letzten Zeitschritt
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta \psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{s} \\ \Theta_{s} \\ \Theta \\ \kappa (z) \\ \mu \\ W \\ \xi \\ \varrho^{a,b} \\ \tau \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Rauschkomponente Zustand im letzten Zeitschritt Räumlicher Korrelationskoeffizient zwischen Hydrofon a und b
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{s} \\ \Theta \\ \Theta_{s} \\ \Theta \\ \kappa (z) \\ \mu \\ W \\ \xi \\ \varrho^{a,b} \\ \sigma \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Rauschkomponente Zustand im letzten Zeitschritt Räumlicher Korrelationskoeffizient zwischen Hydrofon a und b Standardabweichung
$\begin{array}{l} \alpha_{R} \\ \alpha_{w} \\ \beta \\ \gamma \\ \gamma_{NPP} \\ \Gamma \\ \delta \\ \Delta_{TPL} \\ \Delta\psi \\ \Delta v \\ \zeta \\ \eta \\ \theta \\ \Theta_{b} \\ \Theta_{s} \\ \Theta \\ \Theta_{s} \\ \Theta \\ \kappa (z) \\ \mu \\ W \\ \xi \\ \varrho^{a,b} \\ \sigma \\ \tau \\ \tau \end{array}$	Dämpfung einer Reflexion Breitbandkompressionsfaktor Entstehende Zustände in einem Zeitschritt Sich abspaltende Zustände in einem Zeitschritt Schwelle im Neyman-Pearson-Detektor RFS sich abspaltender Ziele Distanz Relativer Verlust der Trackqualität Änderung der Kursänderungsrate innerhalb einer Pingperiode Änderung der Geschwindigkeit innerhalb einer Pingperiode Referenzhydrofon Frequenz-Faktor im HFM-Signal Kurs Beamwinkel Steuerungswinkel RFS von durch Ziele generierte Kontakte Clutterintensität am Ort des Kontakts z Abweichung von einem wahren Wert Rauschkomponente Zustand im letzten Zeitschritt Räumlicher Korrelationskoeffizient zwischen Hydrofon a und b Standardabweichung Verzögerungskomponente

- ϕ Einfallswinkel relativ zum Referenzhydrofon
- φ Azimuth einer Reflexion
- $\underline{\Phi}$ Komplexwertiger Phasenterm
- $\underline{\Phi}$ Komplexwertiger Vektor aus Phasentermen
- ψ Kursänderungsrate
- Ψ Volumen des Überwachungsgebiets
- $\underline{\omega}$ Komplex
wertiges Gewicht zur Richtungssteuerung
- $\omega \qquad \qquad {\rm Trackgewicht}$
- ω Vektor für die Steuerung eines Richtungsformers

\mathcal{H}	Hypothese
Ø	Index für die I

- \mathcal{L} Likelihood
- \mathcal{X} Zustandsraum
- Z Messraum