Berichte des Wrangell-Instituts für Umweltgerechte Produktionsautomatisierung.

Band 1

Berthold Bitzer (Hrsg.)

Abschlußbericht

Innovationsmanagement, Schulung, Demonstratoren für kleine und mittelständische Unternehmen

QUATRO

- konfinanziertes Landesprogramm EU/NRW

Projektträgerschaft: G.I.B. Landesberatungsgesellschaft Bottrop

Förderkennzeichen: 52 - 92 - 01 - 11 - 034

Shaker Verlag Aachen 2000

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Innovationsmanagement, Schulung, Demonstratoren für kleine und mittelständische Unternehmen/Berthold Bitzer (Hrsg.). - Als Ms. gedr. -

Aachen: Shaker, 2000

(Berichte des Wrangell-Instituts für Umweltgerechte Produktions automatisierung; Bd. 1)

ISBN 3-8265-7240-8

Copyright Shaker Verlag 2000 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISBN 3-8265-7240-8 ISSN 1615-2557

> Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

VORWORT

Vor Ihnen liegt der erste Band einer neuen Schriftenreihe des Wrangell-Instituts für Umweltgerechte Produktionsautomatisierung (WIUP). Das WIUP wurde von den Herausgebern der Schriftenreihe gegründet und wird von der gleichnamigen Wrangell-Institut für Umweltgerechte Produktionsautomatisierung GbR m.b.H. getragen. Das WIUP ist Mitglied der Margarethe von Wrangell-Stiftung e.V., zu der am Ende des Bandes eine kurze Beschreibung beigefügt ist. Margarethe von Wrangell war die erste ordentliche Professorin in Deutschland und hat einen überaus interessanten und erfolgreichen Lebenslauf und beruflichen Werdegang, den ich ebenfalls für den interessierten Leser beifüge.

Der vorliegende Band enthält den Abschlußbericht eines Qualifizierungsprojekts zur Produkt- und Prozeßinnovation.

Qualifizierung und technische Innovationen gewinnen zunehmend an Bedeutung für gewerbliche Unternehmen, insbesondere auch für die mittelständische Industrie. Gerade durch die zunehmende Konkurrenz von kapitalkräftigen Unternehmen aus den EU-Ländern, sowie von Billiganbietern aus Ost-Europa, werden mittelständische Unternehmen aus der Region einem wachsenden Innovationsund Kostendruck ausgesetzt. Dieser Druck erzwingt, einen Technologievorsprung herauszuarbeiten, neue Marktnischen zu erschließen und durch noch höhere Qualität, sowie durch noch mehr Flexibilität, Marktpositionen zu verteidigen. Dazu braucht es ein gezieltes, auf kleine und mittelständische Unternehmen ausgerichtetes Innovationsmanagement, eine Qualifizierung der Mitarbeiter und technische Innovationen.

Der Universitätsabteilung Soest wurde im Rahmen eines EU-Programmes ein innovativer Modellversuch im Bereich der PC- und SPS-basierten Visualisierungssysteme übertragen. Ziel dieses Modellversuchs ist es u.a., exemplarisch für Visualisierungssysteme die Einführung einer Innovation in einem mittelständischen Unternehmen aufzuzeigen und für zukünftige Entwicklungen ein Innovationsmanagement zu installieren.

Das Projekt wurde von der IHK Arnsberg und ihrem Bildungsinstitut unterstützt. Insbesondere Kontakte zu IHK-Unternehmen und die Durchführung der Workshops in Kooperation mit der IHK waren nur so möglich. Hierfür sind wir dem Geschäftsführer des IHK-Bildungsinstituts, Herrn Franz-Josef Hinkelmann, und dem Technologieberater der IHK, Herrn Michael Beringhoff, zu besonderem Dank verpflichtet.

Die Projektarbeiten zur Arbeitsorganisation wurden von der Technischen Akademie Wuppertal e.V. durchgeführt.

Alle übrigen Projektarbeiten und Workshops leistete das Fachgebiet Automatisierungstechnik der Universität-Gesamthochschule Paderborn Abteilung Soest.

Die erfolgreiche Durchführung des Projekts war schließlich aber nur mit der Unterstützung der Firma Burkamp in Arnsberg möglich. Dem Unternehmensinhaber, Herrn Martin Burkamp und seinen engagierten Mitarbeitern gilt unser besonderer Dank.

Soest, im August 1999

Berthold Bitzer

Inhaltsverzeichnis

Α	bbildungsverzeichnis	I
T	abellenverzeichnis	II
В	eteiligte Partner	III
1	Einleitung (FAT) - Frank Rößer	
	1.1 Fördermaßnahmen im Rahmen von Quatro-Projekten	
	1.2 Problemstellung	
	1.3 Intention und Zielstellung des Projekts	
	1.4 Vorgehensweise	6
	1.5 Aufbau des Buches	8
2	Innovationsmanagement für kleine und mittelständische Unter-	
	nehmen (FAT) - Frank Rößer	9
	2.1 Innovationsdefinitionen	11
	2.2 Methoden zur Prozeßinnovation und deren Bewertung für KMU	13
	2.3 Methoden zur Produktinnovation und deren Bewertung für KMU	16
	2.4 Unterscheidung von Unternehmenstypen zur Anwendung von	
	Innovationsmanagement	28
	2.5 Fördermaßnahmen von Innovationen	31
	2.5.1 Anlaufstellen von Fördermaßnahmen zur Innovation	32
	2.5.2 Exemplarische Fördermaßnahmen für Innovationsphasen	33
	2.6 Laufzeiten von Innovationsberatungsobjekten	35
	2.7 Strategien für Innovationen	36
	2.8 Zieldefinition	38
3	lst-Analyse und Synthese zur Arbeitsorganisation (TAW)	
	- Peter Stratmann	44
	3.1 Aufgaben zur Arbeitsorganisation	44
	3.2 Theoretisches Grundmodell	
	3.3 Untersuchung und Bewertung einer vorhandenen Arbeitsorganisation	46
	3.3.1 Vorgehensweise	

	3.3.2 Hilfsmittel	48
	3.3.3 Gespräche mit Führungskräften	52
	3.3.4 Auswertungen	53
	3.4 Innovations- und Lernkultur	57
	3.5 Stand und Entwicklung der Qualifikation	58
	3.6 Erarbeitung von Vorschlägen zur Verbesserung der Arbeitsorganisation	59
	3.7 Bildung eines Teams	66
	3.8 Interne Teamsitzungen	68
4	Stand der Technik im Bereich PVS (FAT) - F. Rößer, W. Mellmann	70
	4.1 Einleitung	70
	4.1.1 PC-SPS basierte Visualisierungssysteme	72
	4.1.2 Marktübersicht PVS	
	4.2 Informationsquellen über Visualisierungssysteme	78
	4.3 Werbeanzeigen und Applikationsbeschreibungen in Zeitschriften	78
	4.3.1 Marktübersichten in Zeitschriften	80
	4.3.2 Marktübersichten im Internet	80
	4.3.3 Internet-Anzeigen der Firmen	81
	4.3.4 Kostenfaktoren von Visualisierungssystemen	81
	4.3.5 Kostenfaktoren für Prozeßvisualisierungssysteme	82
	4.3.6 Anmerkung	88
	4.4 Arbeiten mit PVS	93
	4.4.1 Vorgehensweise zum Erstellen einer Visualisierungssystem-	
	applilation	94
	Beispiel: Einrichten einer Kommunikationsschnittstelle	96
	2 Variablen bzw. Prozeßpunkte definieren	97
	3 Beispiel: Variablen bzw. Prozeßpunkte definieren	98
	4 Grafische Zeichenfunktionen	100
	5 Datenvariablen zuweisen	100
	6 Trendkurven	101
	7 Festlegung des Bildablaufs	102
	8 Protokoll- und Archivierungskomponeneten	102
	9 Bedienprotokoli	103
	10 Anwenderprotokoll	
	11 Protokolldarstellungen	104
	12 Melde- und Alarmkomponenten	105
	13 Definition: Archivieren	107

		14 Ziel der Archivierung	107	
		15 Was kann archiviert werden?		
		16 Archivierungsfunktionen	110	
5	Prol	olem kleiner und mittelständischer Unternehmen (FAT)		
•	- Wilhelm Mellmann			
	5. 1	Stand der Technik im Bereich Fernwartung		
	5. 2	Grundlagen der Fernwartung		
	5. 3	Techniken		
	5. 4	Zugriff auf Netz oder Rechner		
		Fernwartung mit Prozeßvisualisierungssystemen		
		Fernwartung mit Remote-Control-Software		
	5. 7	Fernsteuern mit Internettechniken		
	5. 8	Hardwarebasierte Komponenten zur Fernwartung		
		5.8.1 SPS Modems		
		5.8.2 Bus / Modem-Adapter	140	
	5. 9	Zusammenfassung der verschiedenen Fernwartungstechniken	142	
		Beschreibung der WinCC Applikation		
		5.10.1 S5-Kopplung zur Simulation	148	
6	Den	nonstratoren (FAT) - Wilhelm Mellmann	149	
		Technische Dokumentation		
		6.1. 1 Vorschriften, Richtlinien und Normen	153	
		6.1. 2 Marktübersicht Dokumentationssysteme	158	
		6.1. 3 DTP	159	
		6.1. 4 Office-Systeme	160	
		6.1. 5 Verwaltungssysteme	160	
		6.1. 6 Engineering Data Management (EDM)		
		6.1. 7 Funktionen von EDM-Systemen	162	
		6.1. 8 Groupware	162	
		6.1. 9 Dokumentenmanagement	163	
		6.1.10 Verwaltungssysteme	164	
		6.1.11 Mindestanforderungen	164	
		6.1.12 Bewertung	165	
		6.1.13 Einsatzmöglichkeiten / Verwendungszweck	166	
		6.1.14 Gesamtbewertung	166	
		6.1.15 Demonstrationsdokumentation	167	

6.2	Bescl	nreibung	des Demonstrators S7-300	168
	6.2. 1	Aufbau	des Systems	168
	6.2.2	Kessel		169
	6.2.3	Heizkre	ise	170
	6.2.4	Brauchy	warmwasseraufbereitung	170
	6.2.5	Anforde	rungen an die Hardware des Demonstrators	171
	6.2.6	Funktio	nalitäten des Demonstrationsprogramms	172
		6.2.6. 1	Betriebsprogramme	172
		6.2.6. 2	Witterungs-Regler	174
		6.2.6. 3	Frostschutzfunktion	175
		6.2.6. 4	Sommer- / Winterbetrieb	175
		6.2.6. 5	Wochenprogramme	175
		6.2.6. 6	Brauchwarmwasseraufbereitung	176
		6.2.6. 7	Kesselwasserregelung	176
		6.2.6. 8	Heizkreisregelungen	177
		6.2.6. 9	Druckerausgabe	178
		6.2.6.10	Strukturierung des Demonstrationsprogramms	178
		6.2.6.11	Beobachten und Steuern	180
		6.2.6.12	2 Bedienung des Demonstrators	181
6.3	PROF	IBUS / S	SINEC L2-Bus mit Siemens S7-Komponenten	185
	6.3.1	Einleitun	ng PROFIBUS / SINEC L2-Bus	185
	6.3.2	Beschre	ibung des Demonstrators	187
		6.3.2.1	Aufbau des Systems	187
		6.3.2.2	Anforderungen an die Hardware des Demonstrators	187
	6.3.3	Funktion	nalitäten des Demonstrators	188
		6.3.3.1	FDL-Protokoll	188
		6.3.3.2	FMS-Protokoll	189
		6.3.3.3	DP-Protokoll	189
(6.3.4	Bedienur	ng der Master-Slave-Kommunikation mit dem DP-	
		Protokoll	(Dezentrale Peripherie)	190
(6.3.5	Erstellun	g eines Beispielprogramms	190
		6.3.5.1	Aufgabenstellung	190
		6.3.5.2 I	Projektierung und Konfigurierung des DP-Masters	
		((CP5412 (A2) im PC)	191
6	.3.6 F	unktiona	alitäten des Demonstrationsprogramms	194
			Allgemein	
		6.3.6.2	Sendebaustein FC1 (DP-SEND)	194

6.3.6.3 Empfangen	194
6.3.6.4 Datenaustausch über eine FDL-Verbindung	194
6.4 Gebäudeautomation für das Facility-Management	199
6.4.1 Ziele	203
6.4.2 Arbeitsprogramm	205
7. Zusammenfassung	208
8. Schrifttum zum Innovationsmanagement	210
Anhang	215
 A) Informationen über die Margarethe von Wrangell-Stiftung e.V. ur das WIUP-Wrangell Institut für Umweltgerechte Produktions- 	nd
automatisierung GbR m.b.H	215
B) Die Namensgeberin Margarethe von Wrangell	
(25.12.1876 bis 31.03.1932)	218

Abbildungsverzeichnis

ADD. 2. 1	Upersicht der Verteilung von Ideenfindung	19
Abb. 2. 2	Die Methoden zur Innovationsentwicklung	20
Abb. 2. 3	Überlebenswahrscheinlichkeit von Ideen in Abhängigkeit der	
	Anzahl von Entscheidungsträgern	23
Abb. 2. 4	Unternehmertypen	28
Abb. 2. 5	Arbeitsschwerpunkte zur Untersuchung der Arbeitsorganisation	
	und Möglichkeiten zur Prozeßinnovation	40
Abb. 3. 1	Modularer Aufbau der Qualifizierungsbedarfsanalyse	50
Abb. 4. 1	Komponenten SPS/PC-basierter Visualisierungssysteme	71
Abb. 4. 2	Tendenz der angebotenen Prozeßvisualisierungssysteme in den	
	Jahren von 1993 bis 1998	74
Abb. 4. 3	Häufige Einsatzgebiete für Prozeßvisualisierungssysteme	77
Abb. 4. 4	Zeitschriften, die sich häufig mit dem Thema Prozeßvisualisierung	
	befassen	79
Abb. 4. 5	Preisverteilung der Visualisierungssysteme mit Unterscheidung	
	der verschiedenen Systemversionen	83
Abb. 4. 6	Zusammenhang zwischen den Preisen der Visualisierungssysteme	
	und deren geforderten Betriebssystemen	84
Abb. 4. 7	Verteilung der Kosten für Visualisierungssysteme bei einer	
	Grundausstattung	87
Abb. 4. 8	Zusammenhang zwischen dem Preis der Visualisierungssysteme	
	und der Anzahl der Prozeßvariablen	88
Abb. 4. 9	Zusammenhang zwischen der Anzahl der Prozeßvariablen bzw.	
	Systemausführung in Bezug auf den Preis des Visualisierungs-	
	system Wizcon	89
Abb. 4.10	Der Projekt-Name	95
Abb. 4.11	Einrichten einer Kommunikationsschnittstelle (Citect)	96
Abb. 4.12	Deklaration einer Variablen	98
Abb. 4.13	Numerische Ein-, Ausgabe; Balkenanzeige, Analoganzeige,	
	Textanzeige	99
Abb. 4.14	Darstellung der Bedienelemente: Taste, Check-Box, Hebel,	
	Slider (Schiebregler)	99
Abb. 4.15	Standardfunktionen eines Grafikeditors	100
Abb. 4.16	Beispiel zur Variablenzuweisung	.100
Abb 4 17	Darstellung einer typischen Trendkurve (Citec)	101

Abb. 4.18	Projektierung eines Bildwechsels	102
Abb. 4.19	Übersicht der Protokolltypen sowie der zugehörigen Protokolle	103
Abb. 4.20	Protokollausgabe	104
Abb. 4.21	Aufbau einer Melde-/Alarmkomponente	106
Abb. 4.22	Archivierungsdarstellung	108
Abb. 4.23	Archivierung von Prozeßdaten in fortlaufend neu generierte	
	Dateien	109
Abb. 4.24	Archivierung als Ringspeicher	110
Abb. 5. 1	Demonstrator zur Fernwartung	113
Abb. 5. 2	Alternativen des Fernwirkens	116
Abb. 5. 3	Übertragungsweg bei einer 56 Bit/s – Modemverbindung	118
Abb. 5. 4	Anschlußvarianten bei ISDN	118
Abb. 5. 5	Übersicht S0-Bus beim ISDN-Anschluß	120
Abb. 5. 6	Direkte Remote-Control-Verbindung	124
Abb. 5. 7	Aufbau von WinCC-Client / Server-System	125
Abb. 5. 8	Direkter Zugriff auf einen Host	127
Abb. 5. 9	Zugriffsmöglichkeiten ReachOut 7.0	129
Abb. 5.10	Beispiel für den Bildschirminhalt des Viewers bei einer Fern-	
	Steuerung mit ReachOut	132
Abb. 5.11	Fernwartung über SPS-Modems	136
Abb. 5.12	Anschlüsse des TSN 100 von Lauer	137
Abb. 5.13	Fernwartung über H1-Bus mit Tele-Link	137
Abb. 5.14	Zugriff auf nicht vernetzte Steuerungen	138
Abb. 5.15	Tele-Service-Adapter mit Simatic S7	140
Abb. 5.16	TS-Adapter im Modemanschluß	141
Abb. 5.17	Startbild der Beispielapplikation	144
Abb. 5.18	Übersicht des Heizkessels (Demonstrator)	145
Abb. 5.19	Heizungsverteilung mit Vor- und Rückläufen (Demonstrator)	146
Abb. 5.20	Trendkurvendarstellung (Demonstrator)	147
Abb. 5.21	Abbild der SPS (Demonstrator)	148
Abb. 6. 1	Allgemeine Layoutstruktur einer Dokumentation	154
Abb. 6. 2	Ablaufplan für die Erstellung von technischen	
	Dokumentationen	157
Abb. 6. 3	Heizungsanlage	169
Abb. 6. 4	Eingestellte Heizkennlinie mit unterer und maximaler	
	Begrenzung	174
Abb 6 5	Aufbau des Organisationsbausteins OB1	179

Abb. 6. 6	Aufbau des Organisationsbausteins OB35; Abtastzeit 200ms	180
Abb. 6. 7	Aufbau des Anlauf-Organisationsbausteins OB100	180
Abb. 6. 8	Peripherieaufbau	181
Abb. 6. 9	Parametrieroberfläche einer Analog-Eingabegruppe	182
Abb. 6.10	Parametrieroberfläche einer Analog-Ausgabegruppe SM332	
	AO 2x12Bit	184
Abb. 6.11	Protokolltypen	186
Abb. 6.12	Versuchsaufbau	187
Abb. 6.13	SINEC L2-Bus DP-Master und DP-Slave	190
Abb. 6.14	Beziehung zwischen Local LSAP und Remote LSAP	194
Abb. 6.15	Funktionen der Gebäudeautomatisierung	199
Abb. 6.16	Aufgabenbereiche des FM nach GEFMA	200
Abb. 6.17	Aufgaben des Facility-Managements	201
Abb. 6.18	Darstellung der Störungsbehebung	205

Tabellenverzeichnis

Tab. 2. 1	Erfolgserwartungen im Produkt-Markt-Schema (nach Ansoff)	18
Tab. 2. 2	Auswahl der Methode zur Ideenfindung	21
Tab. 2. 3	Klassifizierung der Methoden	22
Tab. 2. 4	Merkmale von Produkt- und Prozeßinnovation	27
Tab. 2. 5	Eigenschaften der Unternehmertypen	29
Tab. 2. 6	Einstufung von kleinen und mittelständischen Unternehmen nach	
	den Förderrichtlinien der EU	31
Tab. 2. 7	Fördermaßnahmen zur Produktinnovation	34
Tab. 2. 8	Fördermaßnahmen zur Proozeßinnovation	35
Tab. 2. 9	Typische Laufzeiten von Innovationsprojekten	35
Tab. 2.10	Produkt-Markt-Schema nach Ansoff	38
Tab. 2.11	Strategische Orientierung der Produktinnovation	41
Tab. 2.12	Gruppierung der Ideenfindungen in das Produkt-Markt-Schema	
	(nach Ansoff)	42
Tab. 4. 1	Kategorien für Automatisierungssysteme	73
Tab. 4. 2	Kaufentscheidende Faktoren in den Marktsegmenten	75
Tab. 4. 3	Kosten für die Laufzeitlizenz (Runtime) verschiedener PVS	90
Tab. 4. 4	Kosten für Schulungsmaßnahmen	91
Tab. 4. 5	Gesamtkosten eines PVS	92
Tab. 4. 6	Zuordnungstabelle einer SPS-Steuerung	97
Tab. 5. 1	Übersicht Remote-Control-Software	128
Tab. 5. 2	Übersicht SPS-Modems	135
Tab. 6. 1	Ein- und Ausgänge	171
Tab. 6. 2	Betriebsprogramme	172

Beteiligte Partner

Universität-GH Paderborn, Abteilung Soest Fachgebiet Automatisierungstechnik (FAT)

Technische Akademie Wuppertal e.V. (TAW)

IHK-Bildungsinstitut Arnsberg GmbH

Burkamp, Energie- und Anlagetechnik GmbH & Co. KG Arnsberg