Prozessanalyse und -überwachung beim Metall-Schutzgasschweißen durch optische In-situ-Sensorsysteme

Process Analysis and Monitoring in Gas Metal Arc Welding by Optical In-Situ Sensor Systems

Von der Fakultät für Maschinenwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von
Marion Purrio, geborene Beckers

Berichter: Universitätsprofessor Dr.-Ing. Uwe Reisgen

Universitätsprofessor Dr.-Ing. Robert Heinrich Schmitt

Tag der mündlichen Prüfung: 20.12.2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar

Marion Purrio

Prozessanalyse und -überwachung beim Metall-Schutzgasschweißen durch optische In-situ-Sensorsysteme

Aachener Berichte Fügetechnik Herausgeber: Prof. Dr.-Ing. U. Reisgen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2016)

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5478-1 ISSN 0943-9358

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand größtenteils während meiner Tätigkeit als wissenschaftliche Mitarbeiterin im Institut für Schweißtechnik und Fügetechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen.

Ich möchte dem Institutsleiter Herrn Prof. Dr.-Ing. Uwe Reisgen für die Möglichkeit zur Promotion sowie für die Betreuung der Arbeit und den benötigten wissenschaftlichen Freiraum zur Erstellung sehr herzlich danken. Ebenso gilt mein Dank dem zweiten Berichter Herrn Prof. Dr.-Ing. Robert Schmitt für die kritische Durchsicht der Arbeit sowie Herrn Prof. Dr.-Ing. Andre Bardow für die Übernahme des Prüfungsvorsitzes.

Für die Möglichkeit, diese Arbeit neben meiner beruflichen Tätigkeit fertigstellen zu können, danke ich Herrn Carsten Börner stellvertretend für alle enowa-Mitarbeiter. Und Simone danke ich dafür, dass sie mir Raum, Zeit und den Kopf freigeschaufelt hat, um meine Pläne auch in die Tat umsetzen zu können.

So viele ISF-ler haben mir bei der Erstellung der Arbeit durch fachliche Diskussion, Kritik, Aufmunterung und ihre Freundschaft geholfen, dass ich sie nicht alle aufzählen kann. Stellvertretend bedanke ich mich bei Gertrud für geduldige und gewissenhafte Hilfe bei allen Literaturund Übersetzungsfragen, Chika und Jens, der besten EDV-Abteilung aller Zeiten, Bärbel für die schnelle und exzellente Übersetzung meiner Ideen in etwas Maschinenlesbares, Guido und Konrad für Rat und Tat rund um alle Fragen zur Schweißtechnik sowie Lars und Leni für die kritische Durchsicht dieser Arbeit.

Ein Teil dieser Arbeit wurde in Forschungsprojekten erstellt, welche von der Forschungsvereinigung DVS - Deutscher Verband für Schweißen und verwandte Verfahren e.V. sowie von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AiF) und der Deutschen Forschungsgemeinschaft (DFG) finanziert wurden. Für diese Förderung bedanke ich mich.

Mein besonderer Dank gilt meinen Eltern für ihre bedingungslose Unterstützung und vor allem für ihr Vertrauen in mich sowie meinem großen Bruder und Vorbild, Marc. Und nicht zuletzt danke ich meinem Mann, Kollegen, Kritiker und Freund Ellwyn für geniale wissenschaftliche Debatten (die ich regelmäßig verliere) und die kritischste aller Begutachtungen meiner Arbeit - aber auch für deine Geduld und dein Verständnis mit mir. Dir widme ich diese Arbeit.

Inhaltsverzeichnis

1	Mot	ivation		1
2	Star	nd der	Technik und Forschung	5
	2.1	Metall	-Schutzgasschweißen	5
		2.1.1	Verfahrensprinzip und Varianten des Metall-Schutzgasschweißens	6
		2.1.2	Automatisierungsgrade, Überwachung und Regelung	7
		2.1.3	Einsatz von Sensoren	10
	2.2	Bilder	fassung bei Schweißprozessen	14
		2.2.1	Messung optischer Eigenschaften	14
		2.2.2	Messung räumlicher Eigenschaften	16
		2.2.3	Kameratechnik	18
		2.2.4	Optische Filter	22
	2.3	Bildve	rarbeitung von Schweißprozessen	24
		2.3.1	Vorverarbeitung	25
		2.3.2	Objekterkennung	26
		2.3.3	Regionenidentifikation	28
	2.4	Forsch	nung im Bereich der Bildauswertung beim Lichtbogenschweißen	30
		2.4.1	Offline-Bildauswertung	31
		2.4.2	Inline-Bildauswertung	31
3	Ziel	setzun	g der Arbeit	35
4	Vers	suchsa	ufbau und Vorversuche bei der Offline-Bildauswertung	37
	4.1	Kame	ra und Beleuchtung	38
	4.2	Proze	sseinstellungen und Schweißstromquelle	39
	4.3	Daten	akquisition	40
		4.3.1	Auswertbare Bildinformationen	42
5	Offl	ine-Bile	danalyse als Hilfsmittel der Inline-Sensorik	45
	5.1	Konta	ktrohrabstand	45
	5.2	Länge	des freien Drahtendes	47
		5.2.1	Signalauswertung und Korrelation der Länge des freien Drahtendes mit	
			transienten Daten	49
	5.3	Tropfe	nerkennung	51
		5.3.1	Umsetzung der Ergebnisse in einer Regelung	58
	5.4	Fazit z	zur Offline-Bildauswertung	60

II Inhaltsverzeichnis

6	Vers	suchsaufbau und Vorversuche bei der Inline-Bildauswertung	63
	6.1	Kamera, Optik und Halterung	63
	6.2	Use-Cases und Prozessbilder	66
		6.2.1 Kameraeinstellungen und graphische Benutzeroberfläche	67
		6.2.2 Prozessvarianten	68
		6.2.3 Aufnahmerichtungen und -winkel	70
	6.3	Oberflächenvorbehandlung und Auswahl des Use-Cases	71
7	Bild	analyse als Komponente der Inline-Sensorik	73
	7.1	Aufgaben der Bildauswertung	73
	7.2	Vorgehensweise	73
		7.2.1 Detektion des Lichtbogenschwerpunktes	74
		7.2.2 Detektion der Drahtelektrode	77
		7.2.3 Detektion der Fuge	80
		7.2.4 Detektion der Schmelzbadbreite	84
	7.3	Implementierung und Funktionstest in LabVIEW	85
	7.4	Fazit zur Inline-Bildauswertung	91
8	Zus	ammenfassung, Optimierungspotenzial und Ausblick	93

Abbildungsverzeichnis

2.1	Uberbegriffe des Metall-Schutzgasschweißens nach DIN 1910-100 [8]	5
2.2	Skizze einer vollmechanisierten MSG-Schweißanlage	6
2.3	Automatisierungsgrade nach 1910-100 [8]	8
2.4	Sensoren zur Brennerpositionierung beim Lichtbogenschweißen nach DVS	
	Merkblatt Sensoren für das vollmechanische Lichtbogenschweißen [28]	12
2.5	Ausschnitt der Einteilung von Bilderfassungssystemen zur Erkennung optischer	
2.6	Eigenschaften nach Beyerer et al. [31]	15
	Beyerer et al. [31]	17
2.7	Bilder mit verschiedener Farbtiefe	20
2.8	Wellenlängenbereiche optischer Strahlung in [nm]	22
		22
2.9	Plancksche Strahlungsspektren auf ausgewählten Temperaturen, doppeltloga-	
	rithmisch aufgetragen	23
2.10	Hierarchische Darstellung von Arbeitsschritten der Bildverarbeitung nach Jäh-	
	ne [46]	25
2.11	8-bit-Graustufenbild mit zugehörigem Histogramm und geglätteter Interpolati-	
	onskurve	26
	4er- und 8er-Nachbarschaft eines Pixels	27
2.13	Originalbild in Graustufen und binarisiert sowie nach den Verarbeitungsschrit-	
	ten Erosion, Dilatation und Konturensuche	29
4.1	Skizze des experimentellen Aufbaus zur Erfassung von Aufnahmen im Durch-	
	lichtverfahren	39
4.2	Ausgewählte Bildausschnitte eines Impulslichtbogenprozesses	41
4.3	Detektierbare Informationen aus der Offline-Bildauswertung eines Impulslicht-	41
4.5		43
	bogenschweißprozesses	43
5.1	Detektion des Kontaktrohrabstandes unter idealen Bedingungen (links) und	
	bei unruhigem Prozess und abgenutztem Kontaktrohr (rechts)	46
5.2	Graustufenbild und zugehörige Grauwerte an der Position der im Bild blau	
	markierten Zeile	48
5.3	Anzeige der Ergebnisse der Drahtdetektion. Gelbe vertikale Linie: Länge des	
	freien Drahtendes, gelbe horizontale Linie: Drahtdurchmesser zur Umrechnung.	50
5.4	Korrelation von freier Drahtlänge und Spannung nach Reisgen et al. [70]	51
5.5	Canny-Kantendetektion mit verschiedenen Schwellwerten	53
5.6	Bildsequenz mit Ergebnissen der Tropfendetektion	55
5.7	Ursachen für eine fehlerhafte Obiekterkennung	56

5.8	Tropfengrößenverlauf als Liniendiagramm und vergrößerter Ausschnitt mit gefüllter Fläche unter der Kurve	57
5.9	Spannungssignal eines Pulses mit zwei Tiefpassfilteroperationen sowie die resultierende Differenz dieser Operationen nach Reisgen et al. [70]	59
5.10	Strom- und Spannungssignale eines Prozesses mit aktiver DDC nach Reisgen et al. [70]	60
6.1	Skizze des Versuchsaufbaus und Aufbau am Versuchsstand vor und während des Schweißens nach Schein et al. [64]	64
6.2		65
6.3		68
6.4	Aufnahmen zu den Use-Cases 1 und 2 aus Tabelle 6.3	69
6.5	Aufnahmesequenz zum Use-Case 3 aus Tabelle 6.3	70
6.6	Ausrichtung der Kamera. Links: Aufnahme hinter dem Prozess, rechts: Auf-	
	nahme vor dem Prozess	71
7.4		
7.1	Originalbild, binarisiert mit Schwellenwert 255 und größte zusammenhängende Komponente mit Zentroid	74
7.2	Vergleich der Zentroiden des Originalbildes, des Binärbildes und des separier-	74
1.2	ten Lichtbogenbereichs	76
7.3	Positionswahl zur Drahtdetektion. Links: Originalbild und vertikale Positionen,	, ,
	rechts: Grauwerte des Bildes entlang dieser Linien	77
7.4	Grauwerte und deren Differenzen zur Drahtdetektion	78
7.5	Bildsequenz mit Visualisierung des Lichtbogenzentroids (blau) und der hori-	
	zontalen Drahtposition (grün)	80
7.6	Originalbild und ausgewählte ROI zur Fugendetektion	81
7.7	Linescans an den farbkodierten horizontalen Positionen in der ROI	82
7.8	Mittelwert aller Linescans und derjenigen Linescans unterhalb des hellen	
	Bereichs	83
7.9	Originalaufnahmen und Falschfarbendarstellungen einer Kehlnahtschweißung	
		84
7.10	Originalaufnahme mit Positionsmarkern und Grauwerte des Linescans sowie	
	3	85
7.11	Reihenfolge und Abhängigkeiten der Detektion der Bildcharakteristiken im	00
7 10	LabVIEW-Programm	86
1.12	und Versuche der Anwendung Sprühlichtbogen/Kehlnaht nach Schein et al. [64]	87

7.13	Berechnungszeiten der einzelnen Detektionen bei verschiedenen Anwendun-	
	gen nach Schein et al. [64]	87
7.14	Arithmetischer Mittelwert und Standardabweichung der Differenzen zwischen	
	manueller und algorithmischer Bildauswertung	89
7.15	Ergebnisse der Bildauswertung eines Laborexperiments nach Schein et al. [64]	90
7.16	Schweißnaht eines Laborexperiments mit Fehlpositionierung des Brenners .	91

Tabellenverzeichnis

2.1	Prozessvarianten des MSG-Schweißens nach DIN 1910-100 [8]	/
2.2	Automatisierungsgrade nach Sheridan, zitiert nach Mayer [20]	9
4.1	Spezifikationen der Photron FASTCAM SA4 nach Datenblatt [68]	38
4.2	Prozesseinstellungen zu den Aufnahmen aus Kapitel 5	40
4.3	Kameraeinstellungen zu den Aufnahmen aus Kapitel 5	40
6.1	Spezifikationen der MIKROTRON MC1310 nach Datenblatt [72]	66
6.2	Versuchsübergreifende Randbedingungen zur Inline-Prozessbeobachtung	66
6.3	Use-Cases zur Bildauswertung	69

Abkürzungsverzeichnis

Verwendete Abkürzungen

Abkürzung	Begriff	erstmals auf Seite
DVS	Deutscher Verband für Schweißen und verwandte Ver-	1
	fahren e.V.	
FTB	Fügen, Trennen, Beschichten	1
Mrd.	Milliarde	1
MSG	Metall-Schutzgas	1
DIN	Deutsches Institut für Normung	1
EN	Europäische Norm	1
ISO	Internationale Organisation für Normung	1
GSI SLV	Gesellschaft für Schweißtechnik international,	1
	Schweißtechnische Lehr-und Versuchsanstalt	
S.I.G.M.A	Shielded Inert Gas Metal Arc	5
\mathbf{CO}_2	Kohlenstoffdioxid	5
MIG	Metall-Inertgas	5
MAG	Metall-Aktivgas	5
WIG	Wolfram-Inertgas	6
CMT	Cold Metal Transfer	7
IEC	International Electrotechnical Commission (Internatio-	8
	nale Elektrotechnische Kommission)	
SFB	Sonderforschungsbereich	9
HG	Hochgeschwindigkeit	13
3D	Dreidimensional	14
BRDF	Bidirectional Reflectance Distribution Function (bidirek-	14
	tionale Reflektanzverteilungsfunktion)	
IR	Infrarot	17
TOF	Time Of Flight (Laufzeit)	18
RGB	Rot, Grün, Blau	21
CMOS	Complementary Metal Oxide Semiconductor (komplementärer Metall-Oxid-Halbleiter)	21
CCD	Charge-Coupled Device (ladungsgekoppeltes Bauteil)	21
ND	Neutraldichte	22

Abkürzung	Begriff	erstmals
		auf Seite
UV	Ultraviolett	22
Vis	sichtbarer Bereich	23
FPGA	Field Programmable Gate Array (im Feld programmier-	32
	bare Gatter-Anordnung)	
2D	zweidimensional	33
ROI	Region Of Interest	34
Hg	Quecksilber	38
Xe	Xenon	38
SW	Schwarz-Weiß	54
RAM	Random Access Memory (Schreib-Lesespeicher)	61
CPU	Central Processing Unit (zentrale Prozessoreinheit)	86

Verwendete Einheiten

Zeichen	Einheit	erstmals
		auf Seite
€	Euro	1
%	Prozent	1
s	Sekunde	2
fps	frames per second (Bilder pro Sekunde)	19
Hz	Hertz	19
bit	binary digit (n bit entsprechen 2^n Möglichkeiten)	21
m	Meter	22
K	Kelvin	23
°C	Grad Celsius	23
Α	Ampere	37
W	Watt	38
min	Minute, entspricht 60 s	40
В	Byte, entspricht 8 bit	61
g	Gramm	63
1	Liter	66
V	Volt	69

Verwendete Formelzeichen

Zeichen	Beschreibung	erstmals
		auf Seite
P	Punktoperation	25
p	Grauwert eines Pixels	25
m	Breite eines Bildes	25
n	Höhe eines Bildes	25
i	horizontale Position im Bild	25
j	vertikale Position im Bild	25
S	Schwellwert	25
h	Filtermaske (Matrix)	27
r	Breite einer Nachbarschaft	28
s	Höhe einer Nachbarschaft	28
$w_{ m width}$	Drahtbreite	48
w_{middle}	Drahtmittelpunkt	48
α	Winkel, hier Abweichung vom vertikalen Drahtverlauf	49
a	Gegenkathete, hier Abweichung der Drahtmitte	49
b	Ankathete, hier Kontaktrohrabstand	49
i_{cent}	horizontale Position des Zentroids	54
j_{cent}	vertikale Position des Zentroids	54
λ	Wellenlänge	64
Т	Temperatur	64
i_{arc}	horizontale Position auf dem Lichtbogenumriss	76
$j_{ m arc}$	vertikale Position auf dem Lichtbogenumriss	76

Kurzfassung

Schweißnahtfehler wie beispielsweise Spritzer, Bindefehler und Nahtunregelmäßigkeiten beim Metall-Schutzgasschweißen resultieren aus einem nicht optimal eingestellten Prozess oder aus Schwankungen der Prozessrandbedingungen, wie der Werkstoffzusammensetzung, der Nahtvorbereitung, der Positionierung sowie aus Schwankungen der elektrischen Kenngrößen. Die Folgen sind Ausschuss oder kostenintensive Nacharbeiten. Um dem entgegenzuwirken, werden Systeme zur Prozessüberwachung und zur Prozessregelung eingesetzt, die über Sensorsysteme maschinenlesbare Informationen über den aktuellen Prozesszustand zur Verfügung stellen.

Bisherige Ansätze der Prozesskontrolle lassen sich nach ihrer Positionierung hinsichtlich des eigentlichen Prozessgeschehens in Pre-, Post- und In-situ-Methoden unterteilen. Das Ziel dieser Arbeit ist es, die bisherigen Möglichkeiten von In-situ-Sensorik-Systemen zu erweitern und diese zur Prozessregelung nutzbar zu machen. Hierzu werden Verfahren betrachtet, welche die Bildauswertung zur Informationsgewinnung beim Metall-Schutzgasschweißen einsetzen.

Neben einleitenden und abschließenden Kapiteln gliedert sich die Arbeit in zwei Hauptteile: In den Kapiteln 4 und 5 wird die Bildauswertung als Hilfsmittel der Inline-Sensorik benutzt, indem Ereignisse des Prozessgeschehens (offline) detektiert und mit aufgenommenen transienten Daten verglichen werden. Dazu wird der Prozess mit einer Bilderfassungsrate von bis zu 20000 Hertz aufgenommen und nachträglich analysiert. Dabei kann gezeigt werden, dass die Tropfenablösung im Impulsprozess einer eindeutigen Signalcharakteristik des Spannungssignals zugeordnet werden kann; aber auch die Länge des freien Drahtendes kann in Hochgeschwindigkeitsaufnahmen detektiert und auf die transienten Daten abgebildet werden. Ebenso können mit diesen zeitlich hochaufgelösten Aufnahmen Tropfencharakteristiken, wie der Umfang sowie die Flugbahn und -geschwindigkeit des Tropfens, ermittelt werden.

Im darauffolgenden Teil der Arbeit wird die Bildauswertung direkt als Komponente der Inline-Sensorik behandelt. Hier ist das Ziel, aus dem Schmelzbad gewonnene Informationen direkt zur Prozessüberwachung und -regelung zur Verfügung zu stellen. Dazu wird in den Kapiteln 6 und 7 detailliert beschrieben, inwieweit und mit welchen Methoden Merkmale aus Bildern erkannt und ausgewertet werden können. Die Algorithmen zur Auswertung sind dabei so gewählt, dass eine praxistaugliche Bildaufnahme- und Bildauswerterate erreicht werden kann. Bei den untersuchten Merkmalen handelt es sich um die Drahtelektrode, die Fuge, den Lichtbogen und das Schmelzbad. Aus diesen Objekten können Informationen über eine Brennerfehlpositionierung im Verhältnis zur Fuge, das Lichtbogenverhalten sowie die Schmelzbadbreite gewonnen werden. Eine nachträgliche Daten- und Schweißnahtanalyse gibt außerdem Aufschluss über die Auswirkungen von Fehlpositionierungen.

Abstract

Weld defects, such as spatters, incomplete fusion and weld anomalies in gas-metal arc welding result from a process which has not been optimally set or from variations of the process boundary conditions, for example, from the material composition, the weld preparation, the positioning and also from variations of the electrical parameters. The consequences are welding rejects or expensive weld finishing work. In order to counteract this, systems for process monitoring and process control are applied which provide machine-readable information about the actual state of the process via sensor systems.

Previous approaches of process control were differentiated with regard to their positioning in the actual process into pre-, post- and in-situ methods. The aim of this work is to expand the hitherto existing possibilities of in-situ sensor systems and to utilise them for process control. In this work, methods are described which use image evaluation for information acquisition in gas-metal arc welding.

To this end, the work is, besides introducing and concluding chapters, divided into two main parts: In the chapters 4 and 5, image evaluation as a means of inline sensor systems is used while events occurring during the process (offline) are detected and compared with recorded transient data. In doing so, the process is recorded with an image acquisition rate of up to 20000 Hertz and subsequently analysed. Here, it can be demonstrated that the droplet detachment in the pulsed process can be assigned to a clear characteristic of the voltage signal; but also the length of the wire stick-out can be detected in high-speed recordings and mapped onto the transient data. It is also possible to determine drop characteristics, such as the circumference or the trajectory and speed of the droplet, by means of these high-resolution recordings.

In the next part of the work, image evaluation is treated directly as a component of inline sensor systems. Here, it is the aim to provide information which has been acquired from the molten pool directly for process monitoring and control. Chapters 6 and 7 give a detailed description of the methods which are used for detecting and evaluating the characteristics from images and also of the extent to which this is possible. The algorithms for the evaluation have, at that, been chosen in a way that a practical image acquisition and image evaluation rate can be obtained. The investigated characteristics are the wire electrode, the groove, the arc and the molten pool. From these objects, information about incorrect positioning of the torch in relation to the groove, the arc behaviour and the molten pool width can be obtained. A subsequent data and weld seam analysis also gives information about the effects of incorrect positioning.