Raman-Spektroskopie zur Untersuchung von Biomolekülen

Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg

Zur Erlangung des Doktorgrades Dr.-Ing.

vorgelegt von
Hanna Heidemarie Koch
aus Bayreuth

Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 18.05.2017

Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch

Gutachter: Prof. Dr.-Ing. Stefan Will

2. Gutachter: Prof. Geoffrey Lee Ph.D.

Berichte zur Thermodynamik und Verfahrenstechnik

Band 5/2017

Hanna Koch

Raman-Spektroskopie zur Untersuchung von Biomolekülen

D 29 (Diss. Universität Erlangen-Nürnberg)

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Erlangen-Nürnberg, Univ., Diss., 2017

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5552-8 ISSN 2365-3957

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit ist als Dissertation am Lehrstuhl für Technische Thermodynamik (LTT) der Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg entstanden. Finanzielle Unterstützung erfolgte durch die Deutsche Forschungsgemeinschaft (DFG) und die Erlangen Graduate School of Advanced Optical Technologies (SAOT) der FAU Erlangen-Nürnberg, wodurch die vorliegende Arbeit ermöglicht wurde.

Besonderen Dank möchte ich Herrn Professor Dr.-Ing. Stefan Will für die Möglichkeit der Promotion sowie die wissenschaftliche Unterstützung und Förderung aussprechen. Ferner möchte ich meiner Gruppenleiterin, Dr.-Ing. Kristina Noack, für die Betreuung meiner Arbeit sowie den stets vorhandenen, hilfreichen wissenschaftlichen Austausch danken.

Mein Dank gebührt weiterhin meinen Kooperationspartnern am BVT, Dr. Stephanie Stute und Susanne Pachaly, sowie Natalie Keil vom Lehrstuhl für Pharmazeutische Technologie.

Meine Studenten und Studentinnen Ayşegül Erkoç, Jonas Rosen, Lena Neumeier, Lucas Schindhelm, Manuel Thöne, Ronny Zimmermann, Sandra Polepil, Thomas Freihalter, Tobias Lechner, Theresa Schreiner und Vanessa Noetzel, die ich als Hilfswissenschaftler, Bachelor- und Masterarbeiter sowie Projektarbeiter betreut habe, haben wesentlich zu dieser Arbeit beigetragen. Die konstruktive und produktive Zusammenarbeit hat mir stets viel Freude bereitet.

Ferner möchte ich mich bei den Mitarbeiterinnen des Sekretariats sowie den technischen Mitarbeitern für Ihre Unterstützung bedanken.

Meinen Dank möchte ich auch meinen Kollegen und Kolleginnen für die stets gute Zusammenarbeit aussprechen. Besonders möchte ich Susanne Lind und Thomas Werblinski danken. Die Zusammenarbeit während der gemeinsamen Messungen hat mir sehr viel Freude bereitet.

Zum Schluss möchte ich mich bei meiner ganzen Familie für die Unterstützung während all der Jahre bedanken.

Kurzdarstellung

Biomoleküle spielen in vielen Bereichen wie der Textilindustrie oder der Pharmazie eine wichtige Rolle. In allen Anwendungsgebieten müssen die Moleküle bestimmte Voraussetzungen wie vollständige Reinheit oder Aktivität erfüllen, um eingesetzt werden zu können. In dieser Arbeit werden Enantiomere, Proteine, CO₂ und die Rotalge *Porphyridium purpureum* mittels optischer Messtechniken untersucht. Zunächst erfolgt die optische Differenzierung von Enantiomeren aufgrund enantioselektiver Wechselwirkungen mittels Raman-Spektroskopie. Die intermolekularen Interaktionen zwischen D-D-, L-L- und D-L-Enantiomeren ermöglichen zum einen eine Differenzierung zwischen D- und L-Enantiomer und zum anderen eine Unterscheidung zwischen dem Racemat und Lösungen mit Enantiomerenüberschuss. Ferner ermöglicht die Kombination von Raman-Spektroskopie und multivariater Datenanalyse die Vorhersage des Mischungsverhältnisses von D- zu L-Enantiomer.

Raman-Spektroskopie und multivariate Datenanalyse sind auch für die Bestimmung der Veränderungen der Sekundärstrukturelemente von Proteinen geeignete Methoden. Strukturelle Veränderungen treten durch externe Einflüsse wie Temperaturschwankungen oder pH-Wert-Änderungen auf. Die Strukturänderungen, wie z.B. Fibrillenbildung, können über optische Messtechniken und verschiedene Auswertemethoden bestimmt werden. Dies ist vor allem für die Untersuchung neurodegenerativer Krankheiten wie Parkinson oder Alzheimer von Interesse. Veränderungen in der Struktur von Proteinen gehen auch mit einem Aktivitätsverlust einher. Daher wird in dieser Arbeit weiterhin eine nicht-invasive Hochgeschwindigkeits-Breitband-Abschwächungsspektroskopie in Kombination mit multivariater Datenanalyse entwickelt, mit deren Hilfe es möglich ist, die Proteinaktivität *inline* vorherzusagen.

Zudem finden Untersuchungen zu CO₂, der Kohlenstoffquelle für photoautotrophe Organismen, statt. Dabei wird vor allem auf die CO₂-Konzentration und deren Einfluss auf den pH-Wert in wässriger Lösung eingegangen, da hier die Prozesskontrolle und -optimierung von Algenkulturen im Vordergrund stehen. Raman-Mikrospektroskopie eignet sich auch in diesem Fall für die Vorhersage der CO₂-Konzentration und des pH-Wertes.

In dieser Arbeit werden Biomoleküle mittels Raman-Spektroskopie in Kombination mit weiteren optischen Messmethoden und multivariaten Auswertemethoden analysiert. Damit wird gezeigt, dass diese Kombination möglicherweise für eine Prozesskontrolle und -optimierung geeignet ist. Aufgrund der nicht-invasiven und zerstörungsfreien Messtechniken sind *Inline*-Messungen möglich.

Abstract

Biomolecules play an important role in a various number of application fields like textile industry or pharmacy. In order to be used in a correct manner, in all different scopes of application those molecules have to fulfil certain requirements such as a high purity or a certain amount of activity. In this study, enantiomers, proteins, CO₂ and the red algae *Porphyridium purpureum* will be examined using optical measurement techniques. First, enantioselective interactions are used to differ enantiomers by Raman spectroscopy. A differentiation based on intermolecular interactions between D-D-, L-L- and D-L-enantiomers allows on the one hand a differentiation between D- and L-enantiomers and on the other hand between the racemate and solutions with enantiomeric excess. Besides, the combination of Raman spectroscopy and multivariate data analysis provides the prediction of the mixing ratio of D- and L-enantiomer.

Raman spectroscopy and multivariate data analysis can also be used for determining changes of the secondary structure of proteins. Structural changes arise from the influence of external factors like variations of the temperature or the pH. The structural changes, e.g., fibrillation of proteins, can be determined by optical measurement techniques in combination with different data analysis tools. This is of utmost importance for the study of neurodegenerative diseases such as Parkinson's and Alzheimer's. Structural changes of proteins lead also to a decrease of enzyme activity. Hence, in this study, non-invasive high-speed broadband-attenuation spectroscopy is combined with multivariate data analysis to predict the enzyme activity.

Moreover, CO₂, the carbon source of photoautotroph organism, is studied. The scope is to determine the CO₂ concentration and its influence on the pH in aqueous solutions since a process control and optimization of algal cultures is favoured. In this study, it is shown that Raman microspectroscopy is a very powerful technique to predict both the CO₂ concentration and the pH in aqueous solutions.

Summing up, in this study biomolecules are analysed by Raman spectroscopy combined with further optical measurement techniques and multivariate data analysis. The results indicate that this combination may be used for process control and optimization. Inline measurements will be possible, since the measurement techniques are non-invasive and non-destructive.

Inhaltsverzeichnis

Inhaltsverzeichnis

0	Forn	nelzeichen und Abkürzungen	iv
1	Einle	itung	1
2 Theo		retische Grundlagen	4
	2.1 Mc	olekül-Spektroskopie	4
	2.1.1	Schwingungsspektroskopie	4
	2.1.2	Raman-Spektroskopie	8
	2.1.3	Absorptionsspektroskopie	13
	2.2 Wi	chtige Biomoleküle in der Pharmazie	15
	2.2.1	Enantiomere	15
	2.2.2	Proteine	19
	2.3 Ind	ustriell relevante Metabolite von Algen	23
	2.3.1	Aufzucht von Algen in Photobioreaktoren	24
	2.3.2	Die Rotalge Porphyridium purpureum	24
3	Stan	d der Forschung	28
	3.1 Tre	ennmethoden von Enantiomeren	28
	3.1.1	Verfahren zur Enantiomerentrennung	28
	3.1.2	Optische Messmethoden zur Differenzierung von Enantiomeren	29
	3.1.3	Vorteile der Raman-Spektroskopie zur optischen Trennung von	
		Enantiomeren	
		rfahren zur Bestimmung der Proteinstruktur und -aktivität	
	3.2.1	Messtechniken zur Bestimmung der Proteinstruktur	
	3.2.2	Bestimmung der Proteinaktivität	36
	3.2.3	Anwendung von Raman- und Abschwächungsspektroskopie zur An der Proteinstruktur und -aktivität	
	3.3 Ve	rfahren zur Prozesskontrolle und -optimierung von Algenkulturen	37
	3.3.1	Messtechniken zur Überwachung von Algenkulturen	37
	3.3.2	Einzelzell-Messungen mittels Raman-Mikrospektroskopie	40
	3.3.3	Vorteile (konfokaler) Raman-Mikrospektroskopie zur Überwachung Algenkulturen	-

ii Inhaltsverzeichnis

4	Expe	rimenteller Aufbau und Durchführung	42
	4.1 Un	tersuchte Biomoleküle	42
	4.1.1	Enantiomere	42
	4.1.2	Proteine	46
	4.1.3	Bestimmung der CO ₂ -Konzentration und des pH-Wertes im künstliche	
		Meerwasser-Medium	
	4.1.4	Einzelzellmessungen von Porphyridium purpureum	
	4.2 Ve	rwendete Messtechniken	
	4.2.1	Konventioneller Raman-Aufbau	48
	4.2.2	Polarisationsaufgelöste Raman-Spektroskopie unter Verwendung einer Verzögerungsplatte	
	4.2.3	Multimodales Raman-Mikroskop	52
	4.2.4	Aufbau für Hochgeschwindigkeits-Breitband- Abschwächungsspektroskopie mittels eines Superkontinuum-Lasers	54
	4.2.5	Aktivitätsbestimmungen von Proteinen	56
5	Signa	alauswertung	57
	5.1 Vo	rverarbeitung der Raman- und Abschwächungs-Spektren	57
	5.1.1	Entfernen von cosmic spikes	57
	5.1.2	Untergrundkorrektur	57
	5.1.3	Ein-Punkt-Normierung	59
	5.1.4	Glättung der Spektren mit Hilfe eines Savitzky-Golay-Filters	59
	5.1.5	Berechnung einer Peakfläche	59
	5.2 Ex	zess-Spektroskopie	60
	5.3 En	tfaltung von Raman-Banden	61
	5.4 Qu	antitative Bestimmung der Sekundärstrukturanteile von Proteinen	61
	5.5 Mu	ıltivariate Datenanalysemethoden	62
	5.5.1	Principal Component Analysis (PCA)	62
	5.5.2	Kernel principal component analysis (kPCA)	66
	5.5.3	Independent component analysis (ICA)	69
	5.5.4	Vergleich von PCA, kPCA und ICA	73
	5.5.5	Partial Least Squares Regression (PLSR) und Radial Basis Functions PLSR (RBF-PLSR)	
	5.5.6	Vergleich von PLSR und RBF-PLSR	

Inhaltsverzeichnis iii

6 1	Ergel	onisse und Diskussion	82
6.1	Unt	ersuchung von Enantiomeren mittels Raman-Spektroskopie	82
6.1	.1	Experimenteller Nachweis zur Differenzierung von Enantiomeren mitte konventioneller, polarisationsaufgelöster Raman-Spektroskopie mit	
		Verzögerungsplatte	
6.1	.2	Nachweis enantioselektiver Wechselwirkungen	88
6.1	.3	Vergleich von Raman-Exzess-Spektroskopie und PCA zur Bestimmung enantioselektiver Wechselwirkungen	_
6.1	.4	Untersuchung von Mehrkomponentengemischen mittels ICA1	03
6.1	.5	Untersuchung enantioselektiver Wechselwirkungen bei der Diastereomerbildung	08
6.1	.6	Bestimmung und Vorhersage des Enantiomerenüberschusses	15
		mmung der Proteinstruktur und -aktivität mittels optischer methoden	16
6.2	2.1	Raman-Spektroskopie zum Nachweis von Veränderungen in der Sekundärstruktur von Proteinen aufgrund von Stresseinwirkung1	16
6.2	2.2	Breitband-Abschwächungsspektroskopie zur Bestimmung der Aktivität von Lysozym und Katalase	
6.3 Raman-Spektroskopie von CO ₂ in künstlichem Meerwasser (ASW) sowie Rotalge <i>P. purpureum</i>			
6.3	3.1	Bestimmung der CO ₂ -Konzentration und des pH-Wertes in einem Algenmedium	40
6.3	3.2	Konfokale Raman-Mikrospektroskopie zur Bestimmung der Wachstumsphasen von <i>P. purpureum</i> 1	47
6.4	Ver	gleich verschiedener multivariater Auswertemethoden1	52
7	Zusai	mmenfassung und Ausblick1	58
		aturverzeichnis1	