

Schriftenreihe Lehrstuhl für Partikelverfahrenstechnik

Rheo-PIV nichtkolloidaler Suspensionen: Strukturelle Untersuchungen der Strömungsentwicklung in Schlitzdüsen mit Fokus auf Wandgleiten

Steffen Jesinghausen

Band 3

Rheo-PIV nichtkolloidaler Suspensionen:

Strukturelle Untersuchungen der Strömungsentwicklung in Schlitzdüsen mit Fokus auf Wandgleiten

Dissertation zur Erlangung des akademischen Grades eines DOKTOR DER INGENIEURSWISSENSCHAFT (Dr.-Ing.) der Fakultät für Maschinenbau der Universität Paderborn

> genehmigte DISSERTATION

von Dipl.-Ing. Steffen Jesinghausen aus Korbach

Tag des Kolloquiums:	29.09.2017
Referent:	Prof. DrIng. Hans-Joachim Schmid
Korreferent:	Prof. Dr. Peter Fischer

Schriftenreihe Lehrstuhl für Partikelverfahrenstechnik

Band 3

Steffen Jesinghausen

Rheo-PIV nichtkolloidaler Suspensionen:

Strukturelle Untersuchungen der Strömungsentwicklung in Schlitzdüsen mit Fokus auf Wandgleiten

D 466 (Diss. Universität Paderborn)

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Paderborn, Univ., Diss., 2017

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5600-6 ISSN 2198-1302

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand in den Jahren 2010 bis 2016 während meiner Zeit als wissenschaftlicher Mitarbeiter und akademischer Rat am Lehrstuhl für Partikelverfahrenstechnik der Universität Paderborn.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. Hans-Joachim Schmid, für seine fortwährende Unterstützung und Motivation, auch ungemütliche Wege weiterzugehen. Sein mir entgegengebrachtes Vertrauen und die mir gewährte große innovative Freiheit in Kombination mit vielen, langen Diskussionen haben diese Arbeit überhaupt erst möglich gemacht. Insbesondere die kurzfristigen Besprechungen zu ungewöhnlichen Zeiten gingen über das normale Maß an Betreuung hinaus. Neben der fachlichen Seite konnte ich mir auch menschlich keinen besseren Doktorvater vorstellen.

Herrn Prof. Dr. Peter Fischer danke ich für die unkomplizierte Übernahme des Koreferates und die hilfreichen Ratschläge im Vorfeld der mündlichen Prüfung.

Bei all meinen Kollegen des Fachbereiches bedanke ich mich für die schöne gemeinsame Zeit und das angenehme Arbeitsklima. Insbesondere Ulrike Herrmann danke ich für die fortwährende moralische und organisatorische Unterstützung. Besonderer Dank gilt auch den Technikern Norbert Krause und Norbert Temborius für die technische Beratung sowie meinem Diplomarbeitsbetreuer und späteren Kollegen Philipp Grimm, der mir erst gezeigt hat, dass eine Promotion für mich möglich ist. Sascha Schiller und Nadine Kirchhoff danke ich für die lustigen gemeinsamen Zeiten, die schon während meiner Diplomarbeit begonnen hatte. David Rasche verdient meinen Dank für die vielen spontanen beruflichen und privaten Problemlösungen, die er mir aufgezeigt hat. Meinem langjährigen Bürokollegen Sven Pieper danke ich für die intensive fachliche Zusammenarbeit, seine unumstößliche Ehrlichkeit und die mir entgegengebrachte Freundschaft.

All meinen studentischen Mitarbeitern bin ich dankbar für die belebenden Diskussionen und die vielen Untersuchungen, die Eingang in meine Dissertation gefunden haben.

Meiner Familie, insbesondere meinen Eltern Ruth und Harald Emde sowie Marion und Lothar Jesinghausen, und meinen Freunden danke ich für die jahrelange Unterstützung und die Zerstreuung, welche ich zu jeder Zeit, auch schon während des Studiums, erfahren durfte.

Der herzlichste Dank allerdings gilt meiner Frau Sabrina, die mich auch in schweren Zeiten unermüdlich unterstützt und mir den Rücken freigehalten hat, sodass ich gleichzeitig an meiner Dissertation arbeiten und meinen Kindern ein Vater sein konnte. Meine beiden Kinder Jasmina und Simon sollen wissen, dass sie diese Arbeit zwar nicht unbedingt beschleunigt haben, aber dafür mein Leben unsagbar viel lebenswerter machen.

Schwaney, Oktober 2017

Steffen Jesinghausen

Zusammenfassung

Wandgleiten im Allgemeinen und in Suspensionen ist ein bekanntes Phänomen, welches bis heute aufgrund seiner Komplexität nicht gänzlich verstanden ist. Fortschritte in der Messtechnik ermöglichen indes tiefere Einblicke und ein grundlegenderes Verständnis.

In dieser Arbeit wurde eine neue optische Methode entwickelt, um Strömungen von Suspensionen in mikroskaligen Bereichen sichtbar zu machen. Zu diesem Zweck wurden Mittel der Particle Image Velocimetry mit den Methoden der Speckle Velocimetry kombiniert. Durch die Einbringung einer lokalen Beleuchtung wurde das Signal-Rauschverhältnis bei der Strömungsmessung deutlich verbessert und bisher nicht mögliche Auflösungen erreicht. Um solch optische Strömungsmessungen durchführen zu können, war zunächst eine umfangreiche Untersuchung der optischen Eigenschaften der Ausgangsstoffe notwendig.

Mit der entwickelten Methode wurde die Strömung in einer rheometrischen Schlitzdüse mit hochgefüllten Suspensionen untersucht. Es konnte gezeigt werden, dass die Wandgleitgeschwindigkeit nicht, wie bisher zumeist beschrieben, linear von der Schubspannung abhängt. Vielmehr treten zwei Bereiche auf, in welchen unterschiedliche Abhängigkeiten dominieren. Darüber hinaus wurde deutlich, dass Wandgleiten über den optischen Weg wesentlich zuverlässiger untersucht werden kann, als mit klassischen Methoden. Abschließend wird eine komplett neuartige Methode vorgestellt, um die Konzentrationsverteilung aus der lokalen Viskositätsverteilung zu ermitteln.

Summary

Wall slip in general and specifically in suspensions is a long known phenomenon. However, because of its complexity, there is no general theory about it. Advancements in the field of measuring technology allow for new investigations and more profound understanding nowadays.

In this thesis a new optical method to visualize flow processes of suspensions on a micron scale was developed. Therefore, the known methods of Particle Image Velocimetry and Speckle Velocimetry were combined. With the help of a local illumination the signal to noise ratio was considerably enhanced. Thus, compared to the standard methods, far better resolutions were possible. To allow for optical flow measurements extensive investigations of the suspensions components optical properties were necessary.

Later, the developed method was utilized to investigate rheometrical flows of highly filled suspensions in a slit die. It could be shown that the former described linear dependence of the wall slip velocity from the shear stress is void for suspensions. It was found that there are two different slip regimes with different dependencies. The optical method showed to be a lot more reliable for suspensions than classical method to determine wall slip effects. As a last part, a new approach to derive concentration profiles from local viscosity measurements is presented.

Vorträge und Publikationen

Jesinghausen, S.; Schmid, H.-J.: Rheologische Charakterisierung hoch-gefüllter Suspensionen unter kontinuierlichem Fluss mit Hilfe optischer Methoden. Kolloquium des Instituts für "Polymere Materialien und Prozesse": Partikel/Matrix – Wechselwirkungen und Verbundwerkstoffe: Paderborn, 2011

Jesinghausen, S.; Schmid, H.-J.: Untersuchung zur Korrelation des Zeta Potentials und der rheologischen Eigenschaften einer Suspension mittels FT-Rheologie. ProcessNet Fachausschuss Rheologie: Hohenheim 2012

Jesinghausen, S.; Schmid, H.-J.: Optical measurement of rheological properties of suspensions in a semitransparent slit die. International Congress on Rheology 2012 (ICR): Lissabon, 2012

Jesinghausen, S.; Schmid, H.-J.: Highly filled viscoelastic fluids in a slit die: Optical measurements of rheological properties, particle migration and wall slip. International Congress on Particle Technology 2013 (PARTEC): Nürnberg, 2013

Jesinghausen, S.; Schmid, H.-J.: Rheological characterization of transparent suspensions by means of the velocity profile from PTV/PIV measurements. Annual European Rheology Conference 2014 (AERC): Karlsruhe, 2014

Jesinghausen, S.; Schmid, H.-J.: **Possibilities and challenges of Rheo-PIV for highly filled suspensions in a slit die.** (Poster) Annual European Rheology Conference 2015 (AERC): Nantes, **2015**

Jesinghausen, S.; Schmid, H.-J.: **Particle Image Velocimetry and its potential to improve the analysis of suspensions.** International Symposium on Food Rheology and Structure 2015 (ISFRS): Zürich, **2015**

Jesinghausen, S.; Schmid, H.-J.: **PIV Rheologie von Suspensionen in einer** rechteckigen Schlitzdüse: Strömungsentwicklung und Wandgleiten. Gemeinschaftstagung der Deutschen Rheologische Gesellschaft (DRG) und des Process-Net Fachausschuss Rheologie: Berlin, 2016 Jesinghausen, S.; Schmid, H.-J.: Rheo PIV in Rectangular Channel Flows: Slip and Concentration Profiles of Non Brownian Suspensions. International Congress on Rheology 2016 (ICR), Kyoto, 2016

Jesinghausen, S.; Rene Weiffen; Schmid, H.-J.: Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows. Experiments in Fluids, HJ. Exp Fluids (2016) 57: 153, doi:10.1007/s00348-016-2241-6, 2016

Schmid, H.-J.; Pieper, S.; Jesinghausen, S.: Layer-Formation of Non-Colloidal Suspensions in a Parallel Plate Rheometer under Steady Shear. Annual European Rheology Conference 2017 (AERC): Kopenhagen, 2017

Inhaltsverzeichnis

1	Ein	leitung		1
2	Gru 2.1 2.2	ndlage Rheol 2.1.1 2.1.2 2.1.3 2.1.4 Rheor	en ogie Grundbegriffe Fließverhalten Suspensionsrheologie Fließgrenze neter	3 3 6 7 13 14
	2.3	Wand 2.3.1 2.3.2 2.3.3	gleiten Partikelmigration Wandgleitmodelle Messung und Korrektur von Wandgleiten	18 19 21 24
3	Ziel	setzun	g und Motivation	27
4	Met	hoden		31
	4.1	Particl 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	le Image Velocimetry Prinzip Algorithmus Genauigkeit Verzeichnung Bildvorbereitung	31 31 35 40 40 47
	4.2	4.2.1 4.2.2	Bouguer-Lambert-Beer Beziehung (BLBB) Index-Matching	51 51 52
	4.3	Partik 4.3.1 4.3.2 4.3.3	eleinfärbung Diffusion Einfärbung Beurteilung der Einfärbung	54 54 57 60
5	Ехр	erimer	nteller Aufbau	65
	5.1	Modul	ares Konzept	65
	5.2	Versu 5.2.1 5.2.2 5.2.3	chsaufbau PIV-System Kamera und Laserausrichtung Düsenrotation und Einlauf	66 67 68 74
	5.3	Schlitz	zdüsen	76

		5.3.1 Düse 1 (temperierbare Düse)	83
		5.3.2 Düse 2 (transparent)	. 87
	5.4	Transmissionsmesszelle	. 89
	5.5	Experimentelle Rahmenbedingungen	. 93
6	Erg	ebnisse	99
	6.1	Transparenzmessungen	. 99
	6.2	Druckmessungen	106
	6.3	Einlaufströmung	109
	6.4	Mooney Untersuchungen	111
	6.5	Profilanalyse	114
	6.6	Wandgleiten	117
	6.7	Gleitschichtdicke	121
	6.8	Konzentrationsentwicklung	124
7	Zus	ammenfassung und Ausblick	129
Lite	eratu	rverzeichnis	133
Anl	nang		145

Abbildungsverzeichnis

Abb.	2.1:	Gescherter Würfel unter Lasteinwirkung	4
Abb.	2.2:	Schichtenströmung im 2-Platten Modell	5
Abb.	2.3:	Übersicht Fließverhalten:	7
Abb.	2.4:	Typische Scherratenabhängigkeit für Suspensionen	. 13
Abb.	2.5:	Funktionsprinzip Hochdruck-Kapillarrheometer	. 15
Abb.	2.6:	Rechteckige Schlitzdüse unter vernachlässigbarem Wandeinfluss der schmalen Seiten	. 16
Abb.	2.7:	Wandgleiten von Suspensionen und Reinstoffen	. 22
Abb.	2.8:	Skizze Mooney-Auswertung für Wandgleiten.	. 25
Abb.	4.1:	Schematischer Aufbau eines PIV-Systems an einer Schlitzdüse	. 32
Abb.	4.2:	Interrogation Areas	. 33
Abb.	4.3:	Einfluss der Traceranzahl auf die Korrelation [Lin09]	. 34
Abb.	4.4:	Linien PIV Algorithmus	. 36
Abb.	4.5:	Funktionsweise eindimensionaler PIV Algorithmus in x-Richtung (Fließrichtung)	. 38
Abb.	4.6:	Verzeichnung bei refraktiven Bildoptiken	. 41
Abb.	4.7:	Relativer Abstand von zwei Punktmittelpunkten auf den Bildmittelachsen in Abhängigkeit ihrer Lage	. 42
Abb.	4.8:	Mittelpunktdetektion im Punktraster	. 43
Abb.	4.9:	Entwicklung der Verzeichnung in y-Richtung an fester x- Koordinate	. 44
Abb.	4.10:	Absolute Verzeichnung in px für die PIV-Kamera mit Objektiv auf 4x Vergrößerung	. 45
Abb.	4.11:	Standardabweichung der Verzeichnungsbestimmung	. 46
Abb.	4.12:	Maximalwertverschiebung für besseren Kontrast	. 48
Abb.	4.13:	Bildrotation und Kantenfindung über Spaltensumme	. 49
Abb.	4.14:	Normierte Helligkeitsverteilung auf dem Kamerasensor	. 50
Abb.	4.15:	Brechung von Lichtstrahlen	. 53
Abb.	4.16:	Absorptions- und Emissionsspektrum für Rhodamin B. [Ges]	. 54
Abb.	4.17:	a) Penetrationsgeschwindigkeiten in Abhängigkeit der Methanol und Ethanol Temperatur [Mut86] b) Diffusionsweg in	E 0
1 h h	1 10.	a) 62 um 75 um Degeerd M440 Partikoln ver Förbung	. 50
ADD.	4.18.	 b) 63 μm – 75 μm Degacryl M449 Partikeln vor Farbung b) 63 μm – 75 μm Degacryl M449 Partikeln nach Färbung 	. 59
Abb.	4.19:	Bildanalyse Durchfärbung am Beispiel teilgefärbter Partikeln	. 61
Abb.	4.20:	Eintärbegrad tür CA40 Partikeln in Ethanol	. 62
Abb.	4.21:	Einfärbegrad für CA40 Partikeln in Methanol	. 62
Abb.	4.22:	Einfärbegrad für M449 63µm Partikeln in Ethanol	. 63
Abb.	4.23:	Einfärbegrad für M449 100 µm Partikeln in Ethanol	. 63

Abb. 5.2: Schematischer Aufbau des Messsystems Abb. 5.3: Aufbau Laser- und Kameraausrichtung Abb. 5.4: Intensitätsverteilung des Lichtschnittes Abb. 5.5: Lichtschnittdicke in Abhängigkeit vom Fokusabstand	. 67 . 69 . 72 . 73
Abb. 5.3:Aufbau Laser- und KameraausrichtungAbb. 5.4:Intensitätsverteilung des LichtschnittesAbb. 5.5:Lichtschnittdicke in Abhängigkeit vom Fokusabstand	. 69 . 72 . 73
Abb. 5.4: Intensitätsverteilung des Lichtschnittes Abb. 5.5: Lichtschnittdicke in Abhängigkeit vom Fokusabstand	. 72
Abb. 5.5: Lichtschnittdicke in Abhängigkeit vom Fokusabstand	73
Abb. 5.6: Drehbarer Anschlussflansch	. 75
Abb. 5.7: Übergang HKR zu Schlitzdüse	. 76
Abb. 5.8: Strömungsentwicklung beim Einlauf in einen Spalt	. 78
Abb. 5.9: Teilweise Verstopfung des Fließkanals	. 81
Abb. 5.10: Verstopfung des Düseneinlaufs in Folge zu hoher Konzentrationen	. 82
Abb. 5.11: Temperierbare Messdüse Seitenansicht	. 84
Abb. 5.12: Kühlkanäle im oberen und unteren Düsenteil	. 85
Abb. 5.13: Schnittdarstellung der temperierbaren Messdüse	. 86
Abb. 5.14: Volltransparente Messdüse	. 88
Abb. 5.15: Undichtigkeit beim Düseneinlauf	. 89
Abb. 5.16: Vermessung des Düsenspalts	. 89
Abb. 5.17: Becke-Linien [Car11]	. 90
Abb. 5.18: Beispielhafte Erläuterung der entwickelten Methodik zur Bestimmung des Brechungsindex	. 91
Abb. 5.19: Schematischer Aufbau Fotomesszelle	. 92
Abb. 5.20: Photometer: Abhängigkeit von Zeit und Temperatur am Beispiel der LED Lichtquelle	. 93
Abb. 5.21: Partikelgrößenverteilungen der Partikelfraktionen für die Suspensionen	. 95
Abb. 5.22: Zeitabhängigkeit der Viskosität und der Raumtemperatur	. 97
Abb. 6.1: Vergleich Mischungsgesetze bei T=20°C	101
Abb. 6.2: Temperaturabhängigkeit des Brechungsindex für Rizinusöl- Cassia-Mischungen	101
Abb. 6.3: Beispielhafte Fotometerergebnisse für einen Temperatursweep	103
Abb. 6.4: Brechungsindexabhängigkeit bezogen auf die Partikelgröße	104
Abb. 6.5: Transmission in Abhängigkeit von der Cassia-Konzentration	105
Abb. 6.6: Extinktion in Abhängigkeit von der Partikelvolumenkonzentration:	106
Abb. 6.7: Druckentwicklung in Abhängigkeit von der Konzentration	107
Abb. 6.8: Druckentwicklung für die eingelaufene Strömung	107
Abb. 6.9: Druckentwicklung in Abhängigkeit des Volumenstrom	108
Abb. 6.10: Mittlere relative Abweichung der Druckmessungen	109
Abb. 6.11: Entwicklung des Geschwindigkeitsprofiles	110
Abb. 6.12: Mittlere Geschwindigkeit in x-Richtung in Abhängigkeit von der Position in Fließrichtung	111
Abb. 6.13: Fließkurven für Mooney Messung	112

Abb.	6.14:	Mooney Plot zu Abb. 6.13.	113
Abb.	6.15:	Entwicklung des normalisierten Geschwindigkeitsprofils in	
		Abhängigkeit vom Volumenstrom	115
Abb.	6.16:	Entwicklung des normalisierten Geschwindigkeitsprofils in	
		Abhängigkeit von der Partikelkonzentration	116
Abb.	6.17:	Extrapolation der Geschwindigkeitsprofile	118
Abb.	6.18:	Wandgleitentwicklung in Abhängigkeit von der Schubspannung	119
Abb.	6.19:	Entwicklung der Gleitgeschwindigkeit. Die gestrichelten Linien	
		zeigen die Anpassung des Modells nach Gleichung (6.13)	120
Abb.	6.20:	Entwicklung des Gleitanteils in Abhängigkeit von der	
		Schubspannung	121
Abb.	6.21:	Untersuchung der Gleitschichtdicke	123
Abb.	6.22:	Vergleich Viskositätsmessung im Couette-Rheometer und aus	
		den PIV Messungen für das Matrixfluid	124
Abb.	6.23:	Konzentrationsabhängigkeit der Viskosität	125
Abb.	6.24:	Viskositätsentwicklung in der Düse für eine mittlere	
		Partikelgröße von a =90 µm	127
Abb.	6.25:	Konzentrationsentwicklung in der Düse am Beispiel einer	
		mittleren Partikelgröße von a =90 µm	128

Tabellenverzeichnis

Viskositätsfunktionen für Suspensionen. Mit dem Einsteinfaktor k und dem Selbstverdrängungsfaktor s.	10
Parametervariation Einfärbeversuche.	59
PIV - System	. 68
Vergleich der Messdüsenabmaße und Eigenschaften	83
Mischungsgesetze [Wie11; Sha07; Meh03], mit den	
Brechungsindices der Fluide n1 und n2, dem Brechungsindex	
der Mischung nB , den Volumenanteilen $\phi 1$ und $\phi 2$ und den	
Massenanteilen m1 und m2.	100
Brechungsindex Partikeln	102
	Viskositätsfunktionen für Suspensionen. Mit dem Einsteinfaktor k und dem Selbstverdrängungsfaktor s Parametervariation Einfärbeversuche PIV - System Vergleich der Messdüsenabmaße und Eigenschaften Mischungsgesetze [Wie11; Sha07; Meh03], mit den Brechungsindices der Fluide $n1$ und $n2$, dem Brechungsindex der Mischung nB , den Volumenanteilen $\phi1$ und $\phi2$ und den Massenanteilen $m1$ und $m2$ Brechungsindex Partikeln

Symbole und Indizes

Lateinische Symbole

Symbol	Einheit	Bedeutung	
а	m	Partikelgröße	
Α	m^2	Fläche	
A_P	m^2	Plattenfläche	
В	m	Spaltbreite	
С	_	Konzentration	
С	_	Integrationskonstante	
d_h	m	Hydrodynamischer Durchmesser	
d_l	m	Linsendurchmesser	
d_R	m	Rohrdurchmesser	
D_0	$m^2 \cdot s^{-1}$	Diffusionskoeffizient	
E_{λ}	_	Extinktionskoeffizient	
f	m	Brennweite	
f_{shift}	_	Verschiebungsfaktor	
F	Ν	Kraft	
F_{Druck}	Ν	Druckkraft	
F_P	Ν	Plattenkraft	
$F_{Reibung}$	Ν	Reibungskraft	
g_V	_	Vergleichsparameter	
Н	m	Düsenhöhe	
h	m	Höhe	
Ι	$W \cdot m^{-2}$	Intensität	
I _{Max}	$W \cdot m^{-2}$	Maximale Intensität	
I_{Korr}	_	Korrelationsintensitätsmatrix	
im _{ij}	_	Element einer Bildmatrix	
IM	_	Bildmatrix	
J	$mol \cdot m^{-2}$	Teilchenstromdichte	
k	_	Vergleichsfaktor	
k_B	$J \cdot K^{-1}$	Boltzmann Konstante	
l	m	Länge	
l_E	m	Einlauflänge	

L	m	Düsenlänge
L _{ss}	m	Weg bis zum Gleichgewicht
m	_	Laufkoordinate
М	_	Vergrößerungsfaktor
M_t	kg	Menge absorbiertes Lösemittel
n	_	Krieger Dougherty Exponent / Brechungsindex
n_B	_	Mischungsbrechungsindex
n_f	_	Blendenzahl
n_P	_	Partikelbrechungsindex
0	m	Auflösung
Δp	Ра	Druckverlust
S	_	Selbstverdrängungsfaktor
\$	_	Spaltensumme
S _{Diff}	m	Diffusionsweg
Δs	m	Schärfentiefe
δs	m	Schichtdicke
t	S	Zeit
$t_{\dot{\gamma}}$	S	Zeitskala für Bewegung im Schergradienten
t_D	S	Diffusionszeit
t_{SS}	S	Zeit bis zum Gleichgewicht
Т	K	Temperatur
ΔT	K	Temperaturdifferenz
T_{λ}	_	Transmission
U	m	Umfang
<i>॑</i> V	$m^3 \cdot s^{-1}$	Volumenstrom
\dot{V}_{gleit}	$m^3 \cdot s^{-1}$	Gleitvolumenstrom
v_{pen}	$m \cdot s^{-1}$	Penetrationsgeschwindigkeit
w	$m \cdot s^{-1}$	Geschwindigkeit
W _{Slip}	$m \cdot s^{-1}$	Gleitgeschwindigkeit
W_K	$m \cdot s^{-1}$	Kolbengeschwindigkeit
W_P	$m \cdot s^{-1}$	Plattengeschwindigkeit
W _{sink}	$m \cdot s^{-1}$	Sedimentationsgeschwindigkeit
W_X	$m \cdot s^{-1}$	Geschwindigkeit in x-Richtung
x	m	Richtungskoordinate (Fließrichtung)
Δx	m	Versatz in x-Richtung

Δx_{IA}	px	Bildversatz
Δxy	px	Absoluter Bildversatz
δx	m	Infinitesimaler Versatz in x-Richtung
у	m	Richtungskoordinate (Spalthöhe)
Δy	m	Versatz in y-Richtung
Ζ	m	Richtungskoordinate (Spaltbreite)

Griechische Symbole

Symbol	Einheit	Bedeutung
α	_	Winkel
$\alpha_{Boro/Kovar}$	Κ	Ausdehnungskoeffizient
β	$m^2 \cdot s \cdot kg^{-1}$	Slip-Faktor
γ	_	Scherung
Ϋ́	s^{-1}	Scherrate
$\dot{\gamma}_s$	s^{-1}	Scheinbare Scherrate
Ϋ́w	s^{-1}	Wandscherrate
$\dot{\gamma}_{w,N}$	s^{-1}	"Newtonische" Wandscherrate
δ	m	Gleitschichtdicke
ϵ	m	Breite Interrogation Area
ϵ_λ	—	Extinktionskoeffizient
ϕ	—	Volumenanteil
$\phi_{\scriptscriptstyle M}$	_	Maximaler Volumenanteil
η	$Pa \cdot s$	Dynamische Viskosität
η_i	_	Intrinsische Viskosität
η_N	$Pa \cdot s$	Newtonische Viskosität
η_p	$Pa \cdot s$	Viskosität Reinstoff
η_r	_	Relative Viskosität
η_s	$Pa \cdot s$	Viskosität Suspension
λ	m	Wellenlänge
ν	$m^2 \cdot s^{-1}$	Kinematische Viskosität
ρ	$kg\cdot m^3$	Dichte
$ ho_F$	$kg\cdot m^3$	Fluiddichte
$ ho_S$	$kg\cdot m^3$	Feststoffdichte
τ	Ра	Schubspannung
$ au_{w}$	Ра	Wandschubspannung

Abkürzungen

BLBB	Bouguer-Lambert-Beer-Beziehung
CCD	Charge-Coupled Device
HKR	Hochdruck-Kapillarrheometer
IA	Interrogation Area
LDV	Laser Doppler Velocimetry
LSV	Laser Speckle Velocimetry
LED	Light Emitting Diode
LLq	Lokale Lichtquelle
MRI	Magnetic Resonance Imaging
MRT	Magnetresonanztomographie
NMR	Nuclear Magnetic Resonance
PIV	Particle Image Velocimetry
PMMA	Polymethylmethacrylat