
Strom-Messwandler

Grundlagen und Berechnungsverfahren

Berichte aus der Elektrotechnik

Alois Bröder

Strom-Messwandler

Grundlagen und Berechnungsverfahren

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5649-5 ISSN 0945-0718

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Schon Goldstein bemerkte 1928, dass die Fachliteratur über Messwandler sehr dürftig ist und Lehrbücher über Transformatoren diese überhaupt nicht oder nur sehr stiefmütterlich behandeln. Als Grund sah er hier die Eigenart der auftretenden Probleme, die abseits der sonst im Transformatorenbau zu behandelnden Fragen liegen. ([1], Seite III) Hieran hat sich seitdem leider nicht viel geändert.

Der Bitte von Hochschulen, sowie Kollegen und Geschäftsfreunden folgend und gewürzt mit der nicht ganz ernst gemeinten Aussage (frei nach Günther Oettinger, Politiker) "Wer Messwandler entwickelt, muss sich an seinen Misserfolgen lebenslang messen lassen" reifte die Motivation für diese kleine Abhandlung. Die sachkundigen Leser mögen sich hier gerne berufen fühlen, diese Abhandlung zu ergänzen oder fortzuführen.

Trotz des Bemühens, diese Arbeit so leicht verständlich wie möglich zu halten, geht es nicht ganz ohne Mathematik. Vertrautheit mit den Grundlagen der Elektrotechnik ist obligatorisch. Sind Kenntnisse der Differenzial- und Integral- auch nur marginal erforderlich, so geht es keinesfalls ohne fundiertes Wissen im Rechnen mit komplexen Größen. Auch können einigen sachkundigen Lesern manche Ausführungen zu ausschweifend und langwierig erscheinen. Sie sind jedoch meiner dreißigjährigen Erfahrung in diesem Metier gezollt mit dem Wissen darum, dass bei dem einen oder anderen hier manchmal Verständnisprobleme vorhanden sind.

Ein Großteil dieser Abhandlung ist der Berechnung von Stromwandlern gewidmet, wobei die Herleitung der Gleichungen eine wesentliche Rolle spielt. Auf die unterschiedlichen Arten von Stromwandlern wird dabei nur marginal eingegangen. Die Beschaffenheit der Isolation für den Betrieb von Stromwandlern an der jeweils geforderten Betriebsspannung ist anderen, zur Genüge vorhandenen Literaturen überlassen, insbesondere möchte ich den interessierten Leser verweisen an das Werk "Messwandler für Mittelund Hochspannungsnetze" von Ingmar Grambow (weitere Einzelheiten siehe unter Quellennachweis). Dem gegenüber geht es hier hauptsächlich um die Berechnung des Übertragungsverhaltens, die im Betrieb auftretenden Fehler und deren Verringerung.

Nach einer kurzen Einführung wird die Wirkungsweise, die der eines Transformators entspricht, knapp besprochen. Eine Betrachtung der häufigsten Arten von Stromwandlern rundet die Einführung ab. Bevor wir zur eigentlichen Berechnung übergehen können, werden einige unerlässliche Vorbetrachtungen angestellt und eine Klärung der unterschiedlichen Bedeutungen des Begriffs "Bürde" versucht. Eine Überleitung zu den aus der Norm zitierten Anforderungen an Genauigkeit und Überstromfaktor bereiten auf das nächste Kapitel vor.

In den darauffolgenden beiden Kapiteln wird über das Ersatzschaltbild das Zeigerdiagramm entwickelt und dabei ein Fehler in einigen Veröffentlichungen entdeckt, bevor in dem nächsten Kapitel die unterschiedlichen Permeabilitätsbegriffe definiert werden. Eine kurze Herleitung der Transformator-Hauptgleichung führt dann letztlich zu den Fehlergleichungen für Stromwandler. Dieses Kapitel wird mit einer Diskussion der Fehlergleichung abgeschlossen.

Weitere Kapitel sind der quantitativen Berechnung und der Fehlerminderung gewidmet, wobei auf unterschiedliche Möglichkeiten der Gewinnung magnetischer Kenndaten nur soweit eingegangen wird, wie es den Entwickler von Stromwandlern interessiert. Die hier vorgestellten Berechnungsmethoden sind nicht die einzig möglichen, bieten dem Konstrukteur jedoch eine schnelle Berechnungsmöglichkeit, vor allem in Verbindung mit Tabellen-Kalkulationsprogrammen.

Zum bessern Auffinden von Gleichungen, Abbildungen und Tabellen wurden deren Nummerierungen jeweils zusätzlich um die Seitenzahl des ersten Erscheinens im Text erweitert.

Mein ganz besonderer Dank gilt Herrn Prof. Dr. Josef Hodapp, Dekan des Fachbereichs Energietechnik an der FH Aachen, für seinen unermüdlichen Einsatz und seine Anregungen und Vorschläge. Er hat mit dem Korrekturlesen dieser Arbeit sehr viel Zeit verbracht und damit auch eine große Bürde – um im Sprachgebrauch der Messwandler zu bleiben - und eine hohe Verantwortung übernommen.

Weiterhin danke ich Herrn Prof. Dr. Stefan Bauschke, mit dem ich ebenfalls über meine Gedankengänge diskutieren konnte und der mir neue Sichtweisen aufgezeigt hat.

Ich danke den vielen ungenannten, die mich in meinem Leben stets unterstützt und begleitet haben, ohne die ich letztlich meinen heutigen Erfahrungs- und Kenntnisstand nicht erreicht hätte.

Last but not least gilt ein großer Dank meiner Frau Marie-Luise, die meine Höhen und Tiefen während der ganzen Zeit, die ich mit dieser Abhandlung beschäftigt war, geduldig in Liebe ertragen hat.

Merzenich, 2017

Inhaltsverzeichnis

I Grundlagen

1	Einfü	ihrung	1
	1.1	Wirkungsweise	2
	1.2	Arten von Stromwandlern	3
	1.2.1	Aufsteck- und Wickel-Stromwandler	3
	1.2.2	Schutz-Stromwandler	5
	1.2.3	Weitere Stromwandler	5
2	Einig	ge Vorbetrachtungen zu Stromwandlern	8
	2.1	Stromrichtung	8
	2.2	Kennzeichnung der Anschlüsse	10
	2.3	Die Bürde	11
	2.4	Fehlergrenzen für Strom-Messwandler	14
	2.5	Überstrom-Begrenzungsfaktor	16
3	Ersa	tzschaltbild des Stromwandlers	17
	3.1	Vollständiges Ersatzschaltbild	17
	3.2	Vereinfachtes Ersatzschaltbild	19
4	Zeige	erdiagramm und Fehlerstrom-Dreieck	20
	4.1	Zeigerdiagramm	20
	4.2	Fehlerstrom-Dreieck	25
5	Defi	nitionen der Permeabilität	30
	5.1	Relative Permeabilität und Amplitudenpermeabilität	30
	5.2	Komplexe Permeabilität	32
	5.3	Parallel- und Serienpermeabilität	35
6	Tran	sformator-Hauptgleichung	41
	6.1	Herleitung der Transformator-Hauptgleichung	41
	6.2	Die Transformator-Hauptgleichung in komplexer Darstellung	43
7	Die F	Fehlergleichungen für Stromwandler	44

	7.1	Herleitung des Gesamtfehlers	44
	7.2	Herleitung des Stromfehlers (Übersetzungsmessabweichung)	49
	7.3	Herleitung des Fehlwinkels	52
	7.4	Diskussion der Fehlergleichungen	55
		1 17 17	
П	Berec	hnungsbeispiele und Kennlinien	
8	Bere	chnung eines Stromwandlers	
	8.1	Rechenbeispiel	60
	8.2	Verbesserungen am berechneten Stromwandler	67
	8.3	Berechnung der vollständigen Fehlerkurve eines Stromwandlers	70
	8.4	Betrachtungen zu Fehlerkurven und magnetischen Kennwerten	74
	8.5	Fehlerfortpflanzung	74
	8.6	Sättigungsbeginn und deren Einfluss auf die Genauigkeit	76
9	Ermi	ttlungsmethoden für die benötigten magnetischen Größen	80
	9.1	Die μBH-Kurven	80
	9.1.1	Die μBH2-Kurve	80
	9.1.2	Die μBHd-Kurve	81
	9.1.3	Bewertung der unterschiedlich gewonnen Größen	82
	9.2	Ermittlung des Eisenwinkels ϕ_0 aus den Eisenverlusten	82
	9.2.1	Hystereseverluste	83
	9.2.2	Wirbelstromverluste	83
	9.2.3	Excessverluste	83
	9.2.4	Eisenverluste	84
	9.2.5	Ermittlung der Scheinleistung	85
	9.2.6	Zusammenhang zwischen Eisenwinkeln und Eisenverlusten	86
	9.2.7	Numerische Beispiele	88
	9.3	Wertung der unterschiedlichen Methoden zur Gewinnung der magnetischen Kenngrößen	90

III Verbesserung der Fehlergleichung, Bestimmung magnetischer Kenngrößen aus den Fehlerkurven und Gleichungen zur Beschreibung derselben

10	Entste	ehung der BH-Kurve	. 93
1	0.1 I	Hysteresekurve bei Vollaussteuerung	93
1	0.2 I	Hysteresekurven bei unterschiedlichen Aussteuerungen	95
1	0.3 I	Entmagnetisierung	96
11		tärkeverläufe bei Ansteuerung mit sinusförmiger dichte	. 96
1	1.1 I	Konstruktion des Feldstärkeverlaufs	97
1	1.2 V	Vergleich der Hystereseschleifen mit LISSAJOUS-Figuren	101
1	1.3 I	Folgerungen aus dem nicht sinusförmigen Feldstärkeverlauf	103
1	1.4 I	Die verbesserte Fehlergleichung	105
12	Nume	rische Betrachtungen	107
1	2.1	Numerischer Vergleich Amplituden- und p-Permeabilität	107
1	2.2	Numerische Berechnung mit der verbesserten Fehlergleichung	111
13	Bestir	mmung magnetischer Kenngrößen aus den Fehlerkurven	113
1	3.1	Grundsätzliche Vorgehensweise	114
1	3.2	Numerisches Beispiel	116
14		nungen zur Beschreibung der p-Permeabilitäts- und der winkel-Kurven	119
1	4.1	Gleichungen zur Beschreibung der p-Permeabilitäts-Kurven	119
1	4.2	Numerisches Beispiel zur Beschreibung der p-Permeabilitäts-Kurve	122
1	4.3	Gleichungen zur Beschreibung der Eisenwinkel-Kurven	129
	14.3.1	Beschreibung mittels Eisenverlusten	129
	14.3.2	Beschreibung mittels Polynomen	130
1	4.4	Numerisches Beispiel zur Beschreibung der Eisenwinkel-Kurve	131
1	4.5 A	Abschlussbetrachtung	133
15		hnung magnetischer Anforderungen aus vorgegebener llerspezifikation	136
1	51 I	Berechnung der Mindest-n-Permeahilität	136

IV Maßnahmen zur Fehlerminderung

16	Einle	eitende Vereinbarungen	140
17	Wind	dungsabgleich	140
	17.1	Der Ausgleichstrom	141
	17.2	Parallelverschiebung der Stromfehlerkurve bei Windungsabgleich.	144
	17.3	Zahlenbeispiel	146
	17.4	Fehlerspreizung durch Windungsabgleich	149
18	Misc	hkerne	150
	18.1	Permeabilität von Mischkernen	150
	18.2	Eisenwinkel von Mischkernen	154
19		esserung des Fehlwinkels durch Erhöhen der Induktivität Sekundärkreises	156
	19.1	Zusätzliche Serieninduktivität im Sekundärkreis	157
	19.1.	1 Allgemeine Betrachtung der Serieninduktivität	157
	19.1.	2 Serieninduktivität unter Ausnutzung der Nichtlinearität der μ-Kennlinie	159
	19.1.	3 Numerische Beispiele	160
	19.2	Erhöhung der Streuung	163
	19.2.	1 Erhöhung der Streuung durch Wicklungsanordnung	163
	19.2.	2 Erhöhung der Streuung durch Streubleche	164
20		erverringerung durch zusätzliche Parallelelemente im ndärkreis	165
	20.1	Herleitungen zu den Parallelelementen im Sekundärkreis	165
	20.2	Numerische Beispiele	168
	20.3	Folgerungen aus den numerischen Beispielen	177
	20.4	Gleichungen für Betrags- und Fehlwinkelveränderung	179

V Ergänzende Kapitel

21	Nochn	nalige Betrachtung der Betragsfehlergleichung	183
22	Erwär	mung	189
2	22.1 V	Wärmequellen	189
	22.1.1	Wicklungsverluste	189
	22.1.2	Eisenverluste	190
	22.1.3	Überstromverhalten	191
2	22.2 E	Erwärmung bei unterschiedlichen Belastungsarten	195
	22.2.1	Erwärmung bei thermischem Bemessungs-Kurzzeitstrom	195
	22.2.2	Erwärmung bei offenem Sekundärkreis	196
	22.2.3	Erwärmung bei thermischem Bemessungs-Dauerstrom	198
2	22.3 N	Messfehler durch Fremdfelder	204
	22.3.1	Auswirkung von Fremdfeldern	204
	22.3.2	Maßnahmen zur Verringerung von Fremdfeldeinflüssen	207
VI	Anl	hang	
Lit	eraturv	erzeichnis	210
Bil	der		212
Ve	rwende	te Formelzeichen	213
Fo	rmelver	zeichnis	219
Sac	hworty	verzeichnis	228